
sdmay25-27 - 1

Team Number: 27

Client/Adviser: Dr. Henry Duwe

Team Members/Roles:
Ibram Shenouda – Analog Architecture Developer

Noah Thompson – Analog Architecture Developer

Nathan Stark – Digital Architecture Developer

Nolan Eastburn – Digital Architecture Developer

Ethan Kono – Security Architecture Developer

Will Custis – Security Architecture Developer

Team Website: https://sdmay25-27.sd.ece.iastate.edu/

Revised: 5/4/2025/v3

Open-Source Radio Microcontroller for
Fabrication

DESIGN DOCUMENT

https://sdmay25-27.sd.ece.iastate.edu/

sdmay25-27 - 2

The goal of this project is to create a radio microcontroller unit (MCU) with all created artifacts

being open-source and tailored to those with only basic engineering experience. Engineers and

hobbyists can then use our design as a learning tool to investigate radio frequency (RF) design. This

makes our radio MCU unlike all the others we found on the market, which are closed source.

Closed source designs make it quite difficult for a user to understand how the unit works, which is

what makes our design important for users who want to learn how a radio MCU works. Based upon

this description, our design must meet the following key requirements:

• All created artifacts (design documents, test document, code, etc.) must be open-source

• All testing and design documentation must be understandable to an individual with a basic

knowledge of circuits and embedded systems

• The design must allow for wireless communication using an open standard wireless

communication protocol

• The design must be fabricable

• The design must interface to peripherals (servos, sensors, motors, etc.)

As requested by our client, we used the Caravel harness provided by the Efabless corporation to

implement our design. The Caravel harness contains some basic functional units like a

management core and I/O access to interact with our design in the user area. The Caravel harness

and the design we put in the user area is laid out in the Skywater 130nm PDK, which Efabless has

the means to fabricate in. This means we could fabricate the Caravel harness with our custom

design in it to implement this MCU. Unfortunately, Efabless shutdown in March 2025, meaning we

could not fabricate our design. We continued development and testing to prove our design is viable

to fabricate.

For the design, we split it into two primary sections: digital and analog. The digital section contains

all the digital components that will execute instructions, transfer data, and interface with

peripherals. The analog section will contain all the analog circuits required for RF communication.

For the digital section, we are going to be implementing a RISC-V core, a DFF RAM block, a

wishbone crossbar, GPIO and I2C peripheral access, and an AES security accelerator. For the analog

section, we will be implementing a frequency synthesizer to create stable carrier frequencies for RF

communication. These components alone will not be enough to enable RF communication. There

is simply too much work for a single senior design team to implement a fully functional radio MCU.

What we can do is establish top-level architecture and implement a subset of the RF module

designed to meet our requirements with future design teams building out the remaining

components.

Executive Summary

sdmay25-27 - 3

Using the Efabless toolchain we were able to simulate our designs when laid out to verify that they

meet our design requirements. While there will not be chips to learn from, our designs can still be

used as a valuable learning tool because we have proven our design is able to be fabricated and

provided thorough documentation in the form of this document, and our GitLab page. Even with

fabrication uncertain, we hope that future teams can continue development to enable RF

communication.

sdmay25-27 - 4

Learning Summary

Development Standards & Practices Used

We considered several engineering standards from IEEE. These include IEEE 802.15.1, 802.15.4, and

1481-2019. IEEE 802.15.1 outlines the requirements for the Bluetooth communication protocol, IEEE

802.15.4 outlines the requirements for the Zigbee communication protocol, and IEEE 1481-2019

outlines standards for verifying integrated circuit designs. While our project implementation does

not contain everything necessary to make a functioning radio, the standards helped provide

guidance when implementing the system to make sure that it can be easily extended to make a

functional radio. In addition to these standards, we also utilized best practices taught in courses

and gained from experience in industry, such as self-checking testbenches to confirm digital

designs work as intended. Regular testing caught errors earlier in the design process, mitigating

repetitive work.

Summary of Requirements

• The MCU shall be implemented using the Efabless Caravel Harness (constraint).

• The MCU shall implement the Zigbee communication stack.

• The MCU shall contain a radio subsystem.

• The MCU shall contain two independent RISC-V cores to execute user programs.

• The MCU shall contain two DMA engines.

• The MCU shall contain the following standard peripherals:

 GPIO

 I2C

 SPI

• The MCU shall have software libraries that provide access to hardware functions.

• The MCU shall have a programming interface.

• The RF module shall able to transmit over the 915MHz ZigBee broadcast band with

a 1MHz channel width.

• All Wishbone masters and slaves will use a 10 MHz reference clock which will be

shared with the management SoC.

• 2 KiB of DFF RAM shall be provided for data storage.

• 2 KiB of DFF RAM shall be provided for instruction memory for the RISC-V

processor.

• The MCU shall have a testing interface that enables a user to fully test the unit.

• The digital MCU peripherals shall be tested in a computer simulator to ensure

correct behavior prior to fabrication.

• The MCU shall have a test plan to evaluate the characteristics of the system.

sdmay25-27 - 5

• Each piece of the RF module will be tested by sending their outputs to analog

GPIO pads to read the waveforms. Some internal signals will be connected to the pads via

transmission gates for testing.

• All the artifacts produced throughout the design of the MCU shall be open-source

(constraint).

• All the documentation shall be intuitive and understandable by individuals with a

basic understanding of circuits, digital logic, and MCU usage (constraint).

• The design will fit into a die area of 2.92 mm x 3.52 mm (constraint).

Applicable Courses from Iowa State University Curriculum

The following courses taught at Iowa State are relevant to this project.

Course Relevance
CPR E 281 Basics of digital logic design and HDLs
CPR E 288 Embedded systems programming in C
CPR E 381 More advanced digital hardware design,

CPU architecture
E E 201 Basics of electrical circuits
E E 230 More advanced electrical circuits and

systems
E E 330 Integrated circuit design, testing, and

layout
E E 465 Digital VLSI
EE435 Analog VLSI
CYB E 331 Cryptography

New Skills/Knowledge acquired that was not taught in courses

Skill Relevance
PLL design Key component in analog portion of the

design
ASIC fabrication Design is going to be fabricated, design of

ASICs was taught, but not fabrication
specific

NGSpice Simulator used for analog components
OpenLane Hardening tool to convert HDL code into

digital logic layout

sdmay25-27 - 6

Table of Contents

1. Introduction ... 13

 Problem Statement 13

 Intended Users 13

 ChipForge Co-Curricular .. 14

 Faculty .. 14

 Radio Hobbyists ... 14

2. Requirements, Constraints, And Standards ... 14

 Requirements & Constraints 15

 Long Term Requirements ... 15

 May 2025 Requirements .. 16

 Engineering Standards 17

 Importance of Engineering Standards ... 17

 IEEE 802.15.1 - Bluetooth Standard .. 17

 IEEE 802.15.4 - LR-WPAN Standard (Zigbee) ... 18

 IEEE 1481-2019: Integrated Circuit (IC) Open Library Architecture (OLA) 18

 Incorporation into Project Design ... 18

3. Project Plan .. 18

 Project Management/Tracking Procedures 18

 Task Decomposition 19

 Research and Design ... 19

 Hardware Implementation .. 20

 Testing .. 21

 Project Proposed Milestones, Metrics, and Evaluation Criteria 22

 Fall 24 Milestones .. 22

 Spring 25 Milestones ... 22

 Project Timeline/Schedule 23

 Gantt Chart for Fall 2024 .. 23

 Gantt Chart for Spring 2025... 24

 Plan Changes ... 24

 Risks and Risk Management/Mitigation 25

 Planned Risks ... 25

sdmay25-27 - 7

 Realized Risks ... 26

 Personnel Effort Requirements 27

 Planned Personnel Effort Requirements ... 27

 Deviations From Planned Personnel Effort Requirements .. 29

 Other Resource Requirements 31

4. Design ... 31

 Design Context 31

 Broader Context ... 32

 Prior Work/Solutions .. 33

 Technical Complexity.. 37

 Design Exploration 38

 Design Decisions ...38

 Ideation .. 39

 Decision-Making and Trade-Off ... 49

 Final Design 51

 Overview ... 51

 Detailed Design and Visual(s) .. 51

 Functionality ... 64

 Areas of Concern and Development ... 64

 Technology Considerations 65

5. Testing ... 65

 Unit Testing 65

 Digital .. 65

 Interface Testing 67

 Digital .. 67

 Analog .. 67

 Integration Testing 67

 System Testing 67

 Digital .. 67

 Analog .. 67

 Regression Testing 68

 Digital .. 68

sdmay25-27 - 8

 Analog .. 68

 Acceptance Testing 68

 Digital .. 68

 Analog .. 69

 Security Testing 71

 Resuts 71

 Wishbone Crossbar ... 71

 DFF RAM .. 72

 User Area RISC-V Core ... 72

 I2C Peripheral ... 74

 Wishbone Register File .. 76

 PLL Divider .. 77

 VCO .. 84

 Charge Pump .. 87

 PFD/Charge Pump ... 87

 Level Shifters .. 88

6. Implementation and Design Analysis .. 90

 Wishbone Crossbar 90

 VexRISC-V Core 92

 DFF RAM 92

 I2C Controller 92

 AES Subsystem 93

 Open-Source AES Options .. 93

E-Fabless AES .. 93

6.4.2 Selected Option ... 94

 PLL 94

 Fractional Divider ... 94

 Voltage Controlled Oscillator (VCO) ... 98

 Charge Pump .. 101

 Phase Frequency Detector (PFD) .. 102

 Level Shifters ... 103

 Loop Filter .. 104

sdmay25-27 - 9

 Integrated PLL ... 105

7. Ethics and Professional Responsibility .. 105

 Areas of Professional Responsibility/Codes of Ethics 106

 Four Principles 107

 Virtues 109

 Responsibility ... 109

 Respect .. 109

 Flexibility .. 109

 Individual Virtue Assessment .. 109

8. Closing Material .. 111

 Summary of Progress 111

 Value Provided 112

 Next Steps 112

9. References ... 112

10. Appendices .. 113

 Operation Manual 113

 Creating, Compiling, and Executing Programs for the User Area RISC-V Core 114

 Using the I2C Module .. 115

 User Journey Map 116

 Security Analysis 116

 Attacks & Vulnerabilities in Microcontrollers .. 117

 Countermeasures and Solutions for Vulnerabilities in Microcontrollers 118

 Attacks & Vulnerabilities in Radio Frequency Modules... 119

 Countermeasures and Solutions for Vulnerabilities in Microcontrollers 119

 Conclusion ... 120

 PLL Current Starved VCO Circuit Analysis 121

 PLL Buffer Insertion Theory 123

 PLL Charge Pump Circuit Analysis 125

 Code 128

 Team Organization 128

 Team Members .. 128

 Required Skill Sets for Your Project .. 128

sdmay25-27 - 10

 Skill Sets covered by the Team .. 128

 Project Management Style Adopted by the team .. 128

 Initial Project Management Roles ... 128

 Team Contract ... 129

Table of Figures

Figure 1: Research and Design Task Decomposition ... 19

Figure 2: Hardware Implementation Task Decomposition .. 21

Figure 3: Testing Task Decomposition .. 22

Figure 4: Fall 2024 Gantt Chart .. 23

Figure 5: Spring 2025 Gantt Chart .. 24

Figure 6: First Order Delta Sigma .. 41

Figure 7: Dual Modulus Divider .. 42

Figure 8: PLL Diagram .. 43

Figure 9: Phase Frequency Detector .. 43

Figure 10: Phase Frequency States .. 44

Figure 11: PFD Gain Without Dead Zones .. 44

Figure 12: PFD gain with Dead Zone .. 45

Figure 13: Dead Zones Jitter ... 45

Figure 14: Ring Oscillator ... 46

Figure 15: Current-Starved Ring Oscillator .. 46

Figure 16: PLL Charge Pump & Loop Filter .. 47

Figure 17: 3/2 Inverter Path .. 48

Figure 18: Full Design - Multi-Year .. 51

Figure 19: Spring 2025 Design .. 52

Figure 20: PLL Design ... 52

Figure 21: Fractional N Divider Design .. 53

Figure 22: T Flip Flop .. 54

Figure 23: Accumulator Architecture ... 59

Figure 24: Loop Filter ... 60

sdmay25-27 - 11

Figure 25: Digital Layout.. 69

Figure 26: Fractional N Divider ... 70

Figure 27: Wishbone Crossbar Testbench Waveform ... 71

Figure 28: DFF RAM Writes ... 72

Figure 29: DFF RAM Reads ... 72

Figure 30: RISC-V Core Instruction Fetching ... 73

Figure 31: RISC-V Core Data Memory Write .. 73

Figure 32: Management Core Data Memory Read .. 74

Figure 33: I2C Two Writes ... 74

Figure 34: Oscilloscope I2C Readings .. 75

Figure 35: I2C I/O Expander Testbench with Seven Segment Displays .. 76

Figure 36: Wishbone Register File Write and Read ... 77

Figure 37: Wishbone Register File Arbitration ... 77

Figure 38: Prescaler Testbench ... 78

Figure 39: Waveform of N=3 Test Results .. 79

Figure 40: Waveform of N=2 Test Results ... 79

Figure 41: Prescaled Clock Divider Results .. 80

Figure 42: F=7 and N=1 Accumulator Results ... 81

Figure 43: Full Divider Testbench .. 81

Figure 44: CLK_IN = 928MHz, N.F =92.8 Accumulator Results.. 82

Figure 45: N = 3 at 928MHz with tt corner ...83

Figure 46: Prescalar Frequency Sweep Code ..83

Figure 47: LV VCO Frequency vs Vctl .. 85

Figure 48: LV VCO Duty Cycle vs Vctl ... 85

Figure 49: HV VCO Frequency vs Vctl ... 86

Figure 50: HV VCO Duty Cycle vs Vctl .. 86

Figure: 51 PFD Input ... 88

Figure 52: Sample 2x2 Wishbone Crossbar Architecture .. 91

Figure 53: Prescaler XSchem Schematic ... 94

Figure 54: Final Prescaler Layout .. 95

Figure 55: Counter XSchem Schematic .. 96

Figure 56: Divider XSchem Schematic ... 96

sdmay25-27 - 12

Figure 57: Accumulator XSchem Schematic .. 97

Figure 58: Accumulator Design... 98

Figure 59: Divider XSchem Schematic ... 98

Figure 60: LV VCO Final Schematic ... 99

Figure 61: LV VCO Output Buffer ... 99

Figure 62: LV VCO Final Layout .. 100

Figure 63: HV VCO Final Schematic .. 101

Figure 64: HV VCO Output Buffer ... 101

Figure 65: Charge Pump Schematic ... 102

Figure 66: PFD Schematic with Reset Delay... 102

Figure 67: 3.3V to 1.8V Level Shifter Schematic .. 103

Figure 68: 1.8V to 3.3V Level Shifter Differential Schematic ... 104

Figure 69: 1.8V to 3.3V Level Shifter Current Mirror Schematic .. 104

Figure 70: Second Order PLL Loop Filter Schematic ... 105

Figure 71 Integrated PLL ... 105

Figure 72: User Journey Map ... 116

Figure 73: Current Starved Oscillator ... 121

Figure 74: Unbuffered Voltage Controlled Oscillator Schematic ... 122

Figure 75: Buffered Current Starved Voltage Controlled Oscillator Schematic 123

Figure 76: Conventional Charge Pump Schematic .. 125

Figure 77: Charge Pump Output Stage .. 125

Figure 78: Charge Pump Middle Stage .. 126

Figure 79: Charge Pump Current Reference (First Stage) ... 127

Table of Tables

Table 1: Planned Personnel Effort Requirements ... 27

Table 2: Actual Personnel Effort Requirements .. 29

Table 3: Broader Design Context ... 32

Table 4: Market Research ... 34

Table 5: Prescaler Truth Table ... 55

sdmay25-27 - 13

Table 6: Programmable Counter Truth Table ... 56

Table 7: Routh-Hurtwitz Criterion .. 61

Table 8: Sweep Prescaler Results .. 84

Table 9: LV VCO Full Results .. 85

Table 10: HV VCO Full Results .. 87

Table 11: Current vs output voltage at process corners ... 87

Table 12 PFD/Charge Pump Full Results .. 88

Table 13: 3.3V to 1.8V Level Shifter Simulations .. 89

Table 14: 1.8V to 3.3V Level Shifter Differential ... 89

Table 15: 1.8V to 3.3V Level Shifter Current Mirror Simulations ... 90

Table 16: Open-Source AES Encryption Options .. 93

Table 17: Areas of Professional Responsibility and Codes of Ethics ... 106

Table 18: Four Ethical Principles .. 107

Table 19: Address Map for Wishbone Crossbar ... 114

Table 20: Register Summary for I2C Module ... 115

1. Introduction

 PROBLEM STATEMENT

Many radio microcontroller units (MCUs) exist on the market today; however, their designs are

closed source. This makes it difficult for users of radio MCUs such as the ISU ChipForge co-

curricular, faculty, and radio hobbyists to learn about radio microcontrollers without reverse

engineering the unit due to the designs not being publicly available. It is important that they learn

about radio communication now as wireless connections are becoming more common compared to

their wired counterparts. To address this, our team has designed an open-source radio MCU. This

will provide anyone who wants to learn about how a radio MCU works with all the documentation

and implementation details, including how we designed and implemented in our unit. In addition,

our implementation can be fabricated on the Skywater 130nm PDK, which allows users to physically

use and analyze the radio MCU on top of being able to look at design documents. Having this radio

MCU be open-source enables users to make their own modifications to the design, which is

something an individual cannot do with closed source units. This further promotes learning and

creates opportunities for individuals to be innovative with the base radio MCU design.

 INTENDED USERS

Our user journey map for an ISU EE201 Student is included in the appendix.

sdmay25-27 - 14

 ChipForge Co-Curricular

Chip Forge is a co-curricular at Iowa State University (ISU) that primarily focuses on the design and

fabrication of chips through the Efabless Corporation. The members of Chip Forge consist of

undergraduate and graduate students at ISU as well as faculty advisors. All members of Chip Forge

have an interest in chip fabrication and desire to learn more about it through project development

and experimentation. Based upon their interests, the ChipForge members need an open-source

radio MCU that they can see the designs for, fabricate the design, and then use the MCU in the lab.

This will allow them to dive deep into how a radio frequency (RF) subsystem works on an MCU as

well as use this MCU has a component in any projects they work on. This provides a much better

learning experience than attempting to reverse-engineer an existing closed source radio MCU,

which would prove to be quite difficult and not clear. Finally, we hope that the ChipForge members

can take the radio MCU design and build upon it to meet their needs. Since the original design can

be fabricated, the ChipForge members can make whatever modifications they see fit for their

applications and learn tons about radio MCUs along the way.

 Faculty

Some courses at Iowa State University utilize microcontrollers for labs, such as CPR E 288. Once

fabricated and tested, faculty could use the open-source MCU for lab assignments in place of

existing options. Faculty teaching these courses need a reliable way to teach students about MCUs

with good documentation and tooling support. Good documentation and tools are essential since

this will likely be used for undergraduate students. Documentation and tools would also reduce

the time that faculty need to spend changing existing lab experiments should they adopt the new

MCU. There are several potential advantages of the open-source MCU over existing ones. These

include the ability to tailor the hardware to course requirements, such as adding additional

functionality not commonly implemented in other commercially available products. Additionally,

for cybersecurity focused courses, faculty could provide students the opportunity to study in detail

a wireless device from the hardware level in the lab, which would be a valuable learning experience

not able to be replicated with closed-source designs.

 Radio Hobbyists

Radio hobbyists are usually interested in unique features and documentation/tooling and need

MCUs that enable them to communicate with other devices in an easy way without a lot of setup.

If one examines commercial MCUs that sell well amongst hobbyists, they are typically low-cost,

have good tools and documentation, and have several connectivity features that allow hobbyists to

connect them to common devices. Due to the low volume of the production, competing on price

will be difficult, but tools and documentation is going to be a central focus of the project, and

unique features are possible due to the open-source nature of the project. Furthermore, for

hobbyists with a larger budget, our design could serve as a starting point to develop their own MCU

tailored to their specific application.

2. Requirements, Constraints, And Standards

Due to our project scope being too large for a single ISU senior design team, we decided to scope

our requirements into two groups: Long term requirements and May 2025 requirements. All the

sdmay25-27 - 15

requirements in these two sets need to be implemented for our project to solve the problem

described in our problem statement. Therefore, the union of these two requirement sets make up

the full system requirements for our project. The long term requirements will be implemented by a

future senior design team and the May 2025 requirements were be implemented by our senior

design team by May of 2025. Requirements marked as “constraints” are constraints given by our

advisor/client. May 2025 requirement sections marked as “partial” indicate that only some of the

requirements for that section are May 2025 requirements and the remaining ones are under long

term requirements.

 REQUIREMENTS & CONSTRAINTS

 Long Term Requirements

2.1.1.1. Functional Requirements

• The MCU shall implement the Zigbee communication stack.

o The MCU shall be able to connect to Zigbee-compatible devices.

o The MCU shall be able to generate the Message Authentication Code (MAC) for

encrypted data.

• The MCU shall contain a radio subsystem.

o The radio subsystem shall support multiple operating frequencies.

o The radio subsystem shall support multiple modulation schemes.

o The radio subsystem shall be able to transmit and receive information to/from

other radios.

• The MCU shall contain two independent RISC-V cores to execute user programs.

• The MCU shall contain two Direct Memory Access (DMA) engines.

• The MCU shall contain the following standard peripherals:

o Configurable timers, Serial Peripheral Interface (SPI), and a Universal

Asynchronous Receiver/Transmitter (UART).

o The peripherals must have an easy interface for use and configuration (constraint).

• The MCU peripherals shall be memory-mapped and accessible to the RISC-V processors.

• The MCU shall have software libraries that provide access to hardware functions.

• The MCU shall provide support for loading user programs for the independent RISC-V

cores.

o The programming interface shall be over a serial connection to the MCU.

o The programming interface shall have a stand-alone application that users run on

their PCs to program the MCU.

o The programming interface shall be intuitive to use, such that an individual with

basic MCU programming knowledge can easily program the MCU (constraint).

• The RF module shall be able to transmit over the 915MHz ZigBee broadcast band with a

1MHz channel width.

o The input signal from the processor will go through a Digital to Analog Converter

(DAC) before being modulated with the carrier signal using quadrature phase shift

keying

o The modulated signal will be sent to a power amplifier and transmitted from an

antenna.

sdmay25-27 - 16

2.1.1.2. Testing Requirements

• The MCU shall have a testing interface that enables a user to fully test the fabricated unit.

o The testing interface should provide electrical connections to the following

components in the MCU for testing:

▪ RISC-V cores, DMA engines, peripheral interfaces, PLL

• The MCU shall have a test plan to evaluate the characteristics of the fabricated system.

o The test plan shall provide steps to test the MCU peripherals via software.

▪ Transmit and receive for the I2C, SPI, and UART

▪ Correct divider, counter, and comparator behavior for timer.

▪ Correct input/output functionality for GPIO.

• Each piece of the RF module will be tested by sending their outputs to analog GPIO pads to

read the waveforms. Some internal signals will be connected to the pads via transmission

gates for testing .

 May 2025 Requirements

2.1.2.1. Functional Requirements

• The MCU shall be implemented using the Efabless Caravel Harness (constraint).

o All digital and analog components shall be compatible with the Skylake 130nm

technology that the Caravel platform supports (constraint).

• The MCU shall implement the Zigbee communication stack (partial).

o The MCU shall be able to encrypt and decrypt data with Advanced Encryption

Standard (AES) 128-bit encryption using counter (CTR) mode in accordance with

the ZigBee standard.

• The MCU shall contain an independent RISC-V core to execute user programs.

• The MCU shall contain the following standard peripherals:

o General Purpose Input Output (GPIO) and Inter-Integrated Circuit (I2C)

o The peripherals must have an easy interface for use and configuration (constraint).

• The MCU peripherals shall be memory-mapped and accessible to the RISC-V processors.

• The MCU shall provide support for loading user programs for the independent RISC-V core

(partial)

• The RF module shall able to transmit over the 915MHz ZigBee broadcast band with a 1MHz

channel width (partial).

o The carrier signal will be generated by an analog Phase-Locked Loop (PLL)

frequency synthesizer to 915MHz using a reference oscillator.

o The PLL will be able to step 1MHz between 902 and 928MHz to land at every

frequency band.

o The PLL shall have a settling time of less than or equal to 170us ATSAMR30M18A

o The PLL output will have phase noise less than –91dBm/Hz at a 32 MHz offset.

• All Wishbone masters and slaves will use a 10 MHz reference clock which will be shared

with the management System on Chip (SoC).

• 2 KiB of D Flip-Flop Random Access Memory (DFF RAM) shall be provided for data

storage.

• 2 KiB of DFF RAM shall be provided for instruction memory for the RISC-V processor.

https://ww1.microchip.com/downloads/aemDocuments/documents/WSG/ProductDocuments/DataSheets/ATSAMR30M18A-SAMR30-IEEE-802.15.4-Sub-1GHz-Module-Data-Sheet-DS70005384.pdf

sdmay25-27 - 17

2.1.2.2. Non-Functional Requirements

• All the artifacts produced throughout the design of the MCU shall be open-source

(constraint).

• All the documentation shall be intuitive and understandable by individuals with a

basic understanding of circuits, digital logic, and MCU usage (constraint).

2.1.2.3. Testing Requirements

• The digital MCU peripherals shall be tested in a computer simulator to ensure correct

behavior prior to fabrication.

o Unit tests, system tests, and ad-hoc tests on an ARTY A7-100T FPGA shall be

conducted.

• The analog RF MCU components shall be tested in a computer simulator to ensure correct

behavior prior to fabrication

o The PLL will have its divider, PFD, reference oscillator, and VCO simulated and

characterized using the layout derived from the caravel board.

o The wave forms can then be used to confirm the components behave as expected.

2.1.2.4. Resource Requirements

• The design will fit into a die area of 2.92 mm x 3.52 mm (constraint).

 ENGINEERING STANDARDS

During the design phase of the project, several engineering standards were examined to help with

planning. Two of these standards, IEEE 802.15.4 and IEEE 1481-2019 served a useful purpose during

the implementation process. However, IEEE 802.15.1, which defined Bluetooth, ended up not being

used.

 Importance of Engineering Standards

• Engineering standards are important to ensure safety, reliability, and compatibility

with other products and protocols. Standards also ensure that the creation and

manufacturing of products meets sets of requirements that are deemed necessary

to meet several different qualifications.

 IEEE 802.15.1 - Bluetooth Standard

• This standard defines the physical and medium access control layers for wireless

communication. The Bluetooth standard is used worldwide for low power wireless

communication devices across short range radio frequency connectivity, which is

important for our project as we are implementing a short range and low radio

frequency device through the caravel and Efabless process. Its standards will be

important to take into consideration since our design implements an RF (radio

frequency) module as well.

• This standard was ultimately not used during the implementation phase, since the

client decided that Zigbee was a better fit for the project after being presented with

our research. This decision was made because Zigbee is an open-source standard,

while Bluetooth is not, and Zigbee has the option for a lower operating frequency

of ~915 MHz as opposed to Bluetooth’s 2.4 GHz frequency. Since lack of prior

sdmay25-27 - 18

experience with these high frequencies was already a significant risk for the

project, Zigbee helped to mitigate this by keeping the frequency lower.

 IEEE 802.15.4 - LR-WPAN Standard (Zigbee)

• This standard specifies low-rate wireless personal area network operations,

network stack, model, and foundational network layers for the physical and MAC

networking layers. It is the basis for the ZigBee standard that our project group is

utilizing. It also specifies communication for low-rate wireless devices and is

intended to provide solid foundations in networking for said wireless devices. This

standard applies to our project as the ZigBee protocol outlines the details of

operating a ZigBee device so that they are compatible with existing devices. This

includes details of the physical and MAC layers of the network stack, which are

necessary for reliable communication.

 IEEE 1481-2019: Integrated Circuit (IC) Open Library Architecture (OLA)

• This standard provides the analysis for designers to analyze timing, signal

integrity, logic behavior, and power consumption across different technologies

within a certain accuracy. This standard is relevant to our project since it notes

proper timing processes which are essential for the correct operation of the digital

components of our microcontroller unit and the RF module.

 Incorporation into Project Design

• General principles of power consumption and timing closure will be taken into

consideration for our project design and implementation, as it is important for

both the MCU and RF module we are designing. The general protocols and

principles for Bluetooth and ZigBee will also be utilized and based around because

all other low-rate wireless devices follow the same set of requirements and

protocols. Incorporating those standards specifically into our project will be

necessary across the network stack for connectivity with other devices that use the

same protocols and standards.

3. Project Plan

 PROJECT MANAGEMENT/TRACKING PROCEDURES

This project will be managed using a Waterfall approach. This was chosen because we have a small

set of deliverables with a lot of interdependence that are required to be completed by a deadline

with little flexibility. Waterfall will help make sure that each part of the project (requirements,

design, implementation, verification) are all completed in order. Additionally, documentation is a

key part of the project, and Waterfall methodology typically results in more comprehensive

documentation than Agile, the other approach that was considered. This stems from the fact that

Agile focuses on functionality over documentation as defined in the Agile Manifesto. Since the

project will span multiple senior design teams, it is more acceptable to trade off functionality for

better documentation, since poorly documented functions would likely cause delays and confusion

among future design teams.

sdmay25-27 - 19

The project will use Git as the version control system for code created for the project and a

repository hosted on the Iowa State Gitlab server. This was chosen since Git provides a lot of

functionality for managing different feature development and dealing with conflicts, and the Iowa

State Gitlab is already set up for easy collaboration. Issue tracking will be done using Trello, since

it is free and allows for custom categories to easily classify issue status. Project communication is

currently utilizing a Discord server since it is free, allows different channels to discuss different

aspects of the project, and allows for voice and video calls for remote collaboration.

 TASK DECOMPOSITION

The task decomposition for the project was broken into four main categories, with each having

several subcategories to further break down tasks so they can be more easily measured. This will

allow for actionable tasks that can easily be assigned to team members so everyone knows what

they should be doing.

 Research and Design

The primary deliverables expected from this portion of the project are the test plan document and

the documentation for the components of the system (both hardware and software). The test plan

will outline the bring up tests necessary to confirm the chip functions correctly after it is fabricated.

This will need a high level of detail, since these tests will be carried out by people not directly

involved with the design process. Documentation for individual components is also important,

since the design will be used by a variety of people, including undergraduate students with limited

experience, so understanding how each component of the system functions is critical for the chip

to be useful.

Figure 1: Research and Design Task Decomposition

sdmay25-27 - 20

 Hardware Implementation

The hardware implementation is split into two primary categories, analog and digital design. These

two will be developed and tested separately and combined during integration to create the final

system.

The analog design will primarily consist of a PLL, which in turn is made up of a phase detector,

charge pump, low pass filter, voltage-controlled oscillator, and a divider. Each of these

components will be designed and tested individually before being integrated together to form the

final PLL. In future iterations of the project, the PLL will make up an RF subsystem for

transmitting and receiving data.

The digital design will consist of a Wishbone crossbar, RISC-V core, DFF RAM, DMA controller,

security acceleration, and external peripherals. The Wishbone crossbar will arbitrate access to

memory mapped peripherals in the design and will be created by hand and may change in the

future due to concerns about area usage. The RISC-V core will be generated using a project called

VexRISC-V that provides optimized cores with good performance along with customization

options. This core will be responsible for running user software. The RAM will be implemented

using existing DFF RAM macros found on the Efabless marketplace. The DFF RAM will serve

primarily as data storage for the RISC-V core, with smaller blocks being used for instruction

memory or FIFOs to send/receive data. The DMA controller will help to offload work from the

RISC-V core when transferring data to/from various peripherals. This will allow more processing

power to be available for user applications. Security acceleration will allow users to encrypt and

decrypt data more efficiently than doing it in software by providing hardware capable of

performing these operations. Finally, the external peripherals will provide a way for the user

application to communicate with other devices using protocols such as I2C, SPI, or UART. This will

let users interact with other devices, such as sensors, nonvolatile storage, or other microprocessors.

sdmay25-27 - 21

Figure 2: Hardware Implementation Task Decomposition

 Testing

Testing of the various components of the design will be essential to ensure that the chip functions

properly. There are three primary types of testing that will be performed. Verilog testbenches for

the digital peripherals will help to ensure that the blocks work correctly in isolation, which will

help to eliminate sources of error during integration. Test C programs for the RISC-V processor

will provide a means of system-level testing and will make sure that the system functions as

intended. Finally, analog component testing in simulation for the PLL will make sure that the PLL

sdmay25-27 - 22

is functioning as expected and can be tested after fabrication to ensure the fabricated version meets

specifications.

Figure 3: Testing Task Decomposition

 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

 Fall 24 Milestones

• Design document finished

• Initial hardware designs finalized

o Specific Implementations of each PLL components

o Baseline implementations of peripherals

o RISC-V core design

• Initial test plan

o Defined expected behavior of each component

o System to test component behavior

 Spring 25 Milestones

• Hardware components created

o All baseline implementations created and building

• Initial testing complete

o Digital components tested as a system in simulation/on FPGA

• Test plan created

sdmay25-27 - 23

Figure 4: Fall 2024 Gantt Chart

o Test cases for after fabrication to evaluate electrical characteristics and behavior of

the device

o Test cases should cover all peripherals and electrical characteristics

 PROJECT TIMELINE/SCHEDULE

Our full project timeline and schedule are captured in our Gantt charts shown on the next pages.

Due to the complexity of our project, many of the tasks will need to be shifted to the end of Fall or

Spring of next year. We will only have a single deliverable after the Spring semester, which will

contain a partial implementation of our design as well as all of the design and testing

documentation.

 Gantt Chart for Fall 2024

sdmay25-27 - 24

 Gantt Chart for Spring 2025

 Plan Changes

In late March of 2025, our team was informed that Efabless (the organization that is providing the

fabrication of our chip) was shut down due to funding issues. This effectively pushed development

time out until May instead of April, giving us more time to work on our design implementation. In

addition, due to many realized risks, which will be covered in later sections, many of the tasks

listed on the Spring 2025 Gantt chart took much longer. In addition, due to realized risks, we cut

the DMA Controller.

Figure 5 4: Spring 25 Gantt Chart Figure 5: Spring 2025 Gantt Chart

sdmay25-27 - 25

 RISKS AND RISK MANAGEMENT/MITIGATION

 Planned Risks

3.5.1.1. Unknown Design Tools

Risks

• Our team has no experience with Caravel and the Efabless process.

• Some tools have known issues that may cause delays.

Mitigation

• We are Currently working with members of ISU Chip Forge to learn how to design for

the Caravel Board and avoid known issues.

• We will use available IP from the Efabless marketplace when possible.

3.5.1.2. Limited Die Space

Risks

• The die is 2.92mm x 3.52mm, this means we may not be able to fit everything we want

on the chip.

• Challenging to accurately evaluate the amount of space on the die.

Mitigation

• We have created a list of components for a minimum viable product that must be

included.

• We can remove lower priority components from the design should die space become

an issue.

• If necessary, some components can be accessed via a breakout board.

• Based on our testing, about 300KB of RAM would fill the chip.

3.5.1.3. High Frequency Components

Risks

• High frequency component behavior is difficult to predict prior to simulation.

• Simulation may reveal that divider creates too much spurring for the PLL to create a

usable signal.

Mitigation

• We plan to characterize each individual component through simulation and use that

data to characterize the system. This will allow us to quickly pinpoint a component

that is not meeting its requirements and revise its design.

• As a backup, we have investigated an alternative divider design that eliminates

spurring at the cost of greater noise.

sdmay25-27 - 26

 Realized Risks

3.5.2.1. Unknown Design Tools

Risk Realization

• Lack of knowledge on how to use various tools, including digital/analog simulation,

synthesis, and layout resulted in longer than expected times to implement various

components of the design, such as the Wishbone crossbar and frequency divider.

• Lack of knowledge on how to use tools and time constraints also resulted in a change of

plan from using an SRAM generation tool to using RAM implemented with D Flip-Flops.

This resulted in increased die usage, which is discussed further in section 3.5.2.2.

• The Efabless corporation experienced financial difficulties and ultimately went out of

business, so tool and process support was not as available as we planned. This is discussed

in more detail in section 3.5.2.3.

Implemented Mitigation

• Scope had to be modified to deliver a minimum viable product. For the digital side, this

meant cutting out the DMA engine as well as the UART and SPI peripherals to spend more

time developing and debugging other digital components.

3.5.2.2. Limited Die Space

Risk Realization

• As a result of tool issues, SRAM generation was abandoned in favor of a more proven D

Flip-Flop approach to memory. This worked as expected functionally but decreased the

amount of memory per unit area that was possible.

Implemented Mitigation

• The total memory in the system was reduced to 4 KiB, down from the original plan of 8

KiB.

3.5.2.3. Efabless Corporation Bankruptcy

Risk Realization

• The Efabless corporation experienced funding issues and declared bankruptcy. There is

limited information available on why exactly this happened, but they will not be able to

fabricate anything for the foreseeable future. This risk was not planned for by the team

and occurred with little warning.

Implemented Mitigation

• Digital design moved to target an FPGA-based demonstration for the end of the project.

While the fabricated chips would not have arrived back in time to demonstrate, more

effort was previously being put into trying to harden the design for fabrication. Since

fabrication is no longer possible, more effort was put into simulation and synthesis for an

FPGA.

sdmay25-27 - 27

• Analog design became simulation only. Unlike the digital portion of the design, there is no

straightforward way to examine the analog portion in real system without fabrication.

 PERSONNEL EFFORT REQUIREMENTS

 Planned Personnel Effort Requirements

Below is an effort analysis for each of our tasks listed in our Gantt chart:

Table 1: Planned Personnel Effort Requirements

Task Hours
(estimate)

Justification

Define Project Scope 80 The scope of this project is quite large and there
are many different components we can
implement. This will take substantial effort.

Research OpenRAM 15 There exists good documentation for OpenRAM
and it utilizes generation scripts. This will only
take about a week of effort.

Research RISC-V Core
Generation

15 There exists good documentation for the Vex
RISC-V generator and the generation is done via
scripts. This will only take around a week of
effort.

Wishbone Crossbar
Creation

50 This component is inherently complicated since
it must multiplex many different wishbone
interfaces. This will take a large amount of effort.

RISC-V Core Creation 50 Although the core itself will be generated, an
interface must be defined for the core such that it
can interact with the rest of the design and be
programmed. This is complex since we have
many components in our design, and we must
find a way to supply the core with a program.
This will require a large amount of effort.

DFF RAM Macro
Insanitation

40 The RAM will be implemented using an existing
DFF RAM macro on the Efabless marketplace.
Since the macro is not wishbone compatible, we
will have to write our own wishbone slave
interface for it and do any address translation
that is needed. This will require a large amount
of effort.

Create DMA Controller 60 The DMA controller is an inherently complex
component that will take a decent amount of
research to understand how to create. In
addition, we will have to create an interface for
this component so it can interact with the rest of
our design, which is complex. This will take a
substantial amount of work.

Create AES 128-bit
Encryption Hardware

40 This hardware will require research to
implement, but there is good documentation and

sdmay25-27 - 28

known hardware solutions. The main difficulty
will be incorporating this into the rest of the
design, which is not trivial. This will take a large
amount of effort.

Create External
Peripherals

80 We are including many peripherals in our final
design, each of which have well documented
designs, but can be complicated. Since we are
implementing many peripherals and need to
create an interface for them so they can interact
with the rest of the design, this will require a
substantial amount of effort.

Fabrication 0 With the Efabless shutdown, we can no longer
fabricate.

Research PLL 20 The PLL is inherently complex, but there exists
good documentation of hardware
implementations. So, this will require a few
weeks of effort.

Research Phase Frequency
Detector

20 analog research complexity note

The analog design for the RF module will be
complicated since many different analog
components are required to create each
component. Good documentation exists, but
many of our team members have not had prior
experience designing these analog components.
Therefore, it will take a few weeks to fully
research each component.

Research Charge Pump 20 See “analog research complexity note”

Research Low-Pass Filter 20 See “analog research complexity note”

Research Voltage
Controlled Oscillator

20 See “analog research complexity note”

Research Divider 20 See “analog research complexity note”

Create a Testing
Environment for the PLL

50 Since the PLL is a complicated component,
creating the testing environment for it will be
complicated as well. There are many different
waveforms we need to see and analyze and it is
not trivial to setup an interface to accomplish
this. Therefore, this will take a large amount of
effort.

Design Each PLL
Component

80 Create each component of the PLL on the Caravel
board, then extract its parasitics to be used for
simulation.

Simulate Each PLL
Component

80 Simulate each component, testing expected
behavior, loop characteristics and signal
characteristics.

Finalize PLL Design 50 Review and revise the design based on
simulations. Determine PLL characteristics to be
tested after fabrication.

Create Design Documents 80 The design documents are quite large and will be
edited throughout the course. This will take a
substantial amount of effort.

sdmay25-27 - 29

Create Testing Documents 80 The testing documents will be quite large and
must contain detailed instructions to test our
many components. This will take a substantial
amount of work.

Create Peripheral
Testbenches

60 Since we have many peripherals, each of which
can be complicated, creating testbenches for the
peripherals will take a large amount of work.

Create RISC-V Core
Testbenches

60 Due to the complexity of a RISC-V core, creating
a solid testbench will be very difficult. There are
many different signals we would need to capture
and analyze in a meaningful way. This will take a
large amount of effort.

 Deviations From Planned Personnel Effort Requirements

Many implementation efforts took significantly longer than originally anticipated due to issues

with tools or bugs encountered during simulation. The actual times for each are outlined in the

table below.

Table 2: Actual Personnel Effort Requirements

Task Hours
(estimate)

Justification

Research OpenRAM 20 OpenRAM was more challenging to get working
than anticipated. Generation was ultimately not
functional, and we decided to move to DFF RAM
since it was silicon proven and in a convenient
macro. It also easily translated to the FPGA.

Research RISC-V Core
Generation

20 Researching the RISC-V core took around the
time we expected. We had to learn the VexRISCV
tool in addition to some parts of the scala
programming language, which resulted in the
hours listed.

Wishbone Crossbar
Creation

110 The Wishbone crossbar turned out to be more
challenging to create than anticipated. The
original approach was to make it generic in
Verilog, but due to lack of experience and
language limitations, this turned out to not be
possible. The approach then pivoted to a Python
script, which could write out a Verilog file.

RISC-V Core Creation 40 After the research was performed, generating the
RISC-V core was quite straightforward and
integration went smoothly, so our actual hours
closely matched our predicted ones.

DFF RAM Macro
Insanitation

60 Instantiating the DFF RAM macro and creating a
wishbone interface for it took about how long we
predicted. However, we did not take into
consideration the added time to configure
OpenLane to use this macro in the layout. Due to
the realized risk of new tools, this added many
hours of work.

sdmay25-27 - 30

Create DMA Controller 0 Due to extra time spent on the crossbar, RAM,
and peripherals, this was cut from the project
scope due to time constraints.

Create AES 128-bit
Encryption Hardware

40 After conducting more research, we found that it
would be easier to use a pre-existing open-source
implementation of AES 128-bit encryption rather
than creating our own. This still required a
significant amount of time to research our
options and choose which one would be the best
for our project.

Create External
Peripherals

55 I2C was challenging to get working for a variety
of reasons. This was due to lack of experience
with the protocol and mismatches between the
simulator and hardware.

Fabrication 0 Fabrication was not performed due the Efabless
shutdown discussed earlier.

Research PLL 20 Researching the PLL did not exceed the expected
time due to expansive documentation and
resources available to learn from.

Research Phase Frequency
Detector

20 Analyzing different PFD structures and what is
the simplist to implement using the standard cell
library that Xschem provides.

Research Charge Pump 20 Lack of knowledge and intuition of complex MOS
structures and their anomalies.

Research Low-Pass Filter 20 The loop filter has huge effects on the damping
of the PLL transient response as well as most
other loop characteristics. Researching and
understanding these effects.

Research Voltage
Controlled Oscillator

20 Researching different types of VCO circuit
toplogies and which can operate at high
frequencies did not take much time. However,
trying to familiarize myself with characterisitcs
and how it affects the loop dynamics took some
time.

Research Divider 20 Researching the divider proved difficult due to a
lack of detailed documentation on implemented
designs. This made it challenging to determine
what designs could work for our project.

Create a Testing
Environment for the PLL

50 With the given tutorials from Efabless and ISU
Chip Forge, we were able to set up the testing
environment in the anticipated time frame.

Design Each PLL
Component

100 The unknown tools made component design take
far longer than anticipated. We struggled with
several errors that slowed progress, and it was
difficult to find help because very few people
have experience with these tools.

Simulate Each PLL
Component

100 The unknown tools stretched the time taken to

simulate components. The lengthy computing
time for some of the more comprehensive
simulations also accounts for the additional time
to simulate.

sdmay25-27 - 31

Finalize PLL Design 50 Most components underwent several revisions
before being finalized.

Create Design Documents 150 Significant time was committed to creating
thorough documentation to facilitate our
project’s use as a learning tool.

Create Testing Documents 20 Creating annotated testing results and processes

Create Peripheral
Testbenches

5 Since only the I2C peripheral was created, the
testbench was straightforward to confirm that
reads, writes, repeated starts, and stops worked
correctly.

Create RISC-V Core
Testbenches

15 This was straightforward after it was figured out
how to load programs onto the second core. All
connected interfaces on the core were easily
confirmed to function properly.

 OTHER RESOURCE REQUIREMENTS

We require a testing platform to test our design, which is provided by Efabless and ChipForge.

Efabless provides documentation on how to use existing open-source tools to simulate our digital

and analog designs, which became our main testing approach throughout this project. In addition,

the ChipForge co-curricular has provided ARTY A7-100T FGPAs and tools to load the entire Caravel

harness with our design to them. This enables us to test our designs in real hardware so we can

have greater confidence that our design will work after fabrication. In addition, we require tools to

develop the digital and analog designs and layouts. Efabless and ChipForge have provided

documentation and configuration for open-source tools that enable the creation of the designs and

layouts for our project. These are all the resources we need to implement but not fabricate our

proposed design. Originally, we required a means for fabrication, which was provided by Efabless.

However, due to the Efabless shutdown, fabrication will not be possible through them. So, we

require another means of fabrication, which is not currently known.

4. Design

 DESIGN CONTEXT

All radio MCUs currently available are closed source and use proprietary architectures. This makes

it more difficult for members of ChipForge, a co-curricular at ISU, and professors doing research to

understand their inner workings and tailor them to their specific needs. Our design focuses on

being easy to understand as well as open-source, which will allow users to investigation the

implementation and customize it for their own needs if they have access to the fabrication

resources. This is also supplemented with in-depth documentation, to make the design easy to

understand for people with a basic level of knowledge of electrical and computer systems.

sdmay25-27 - 32

 Broader Context

The primary community targeted by our design is college students and professors, since they would

likely benefit the most from having access to an open-source radio MCU. Since the product we are

creating will likely be lower performance as a tradeoff for being open-source, it is unlikely to impact

the microcontroller industry significantly. The biggest societal need being addressed is the need

for transparency in microcontroller design, something that is not addressed by many major

companies in the space.

Table 3: Broader Design Context

Area Description Examples
Public health,
safety, and
welfare

Our project will benefit people who are
college students and professors by
providing a learning platform that can
perform a variety of tasks often asked of
MCUs. It is unlikely to have a significant
impact on companies or organizations
that already have a foothold in the MCU
market.

• Extensible design

• Documentation allows
students with basic
knowledge to use

Global, cultural,
and social

The academic community has a strong
tradition of sharing resources and
information, and the open-source nature

of our design helps us to continue this
tradition by making our work available
to be built on by others.

The team at Efabless fostered a
community of students and professionals
interested in chip design. When Efabless
closed, it became apparent how
important maintaining that community
is. It facilitates the sharing of ideas and
expertise among its members and results
in more ambitious projects.

• Open-source code
• Documentation

• Contributing to an ISU co-
curricular

• Chip design community
migration

Environmental There are two potential sources of
environmental impact for the project, the
impact for fabrication and the energy
consumption by the device itself after
fabrication. Neither of these are likely to
be significant, since only a small number

will be fabricated, and the final design
will consume a small amount of power.

• Fabrication impact
• Power consumption during

operation

Economic Our product will end up being more
expensive per unit than existing products
for customers, since it is being fabricated
in small numbers. This is not something
within our control, since small
fabrication runs of ASICs are typically

• Higher unit cost
• Fabrication cost covered

by university

sdmay25-27 - 33

expensive regardless of the process or
vendor used. However, funding from the
university has been secured to cover
these costs, so this will not directly
impact the primary users at ISU, only
other potential users.

 Prior Work/Solutions

sdmay25-27 - 34

Table 4: Market Research

Product Services
and Design
What is the

product?

Unique Value
Proposition

What makes this
product unique?

Product
Advantages

What are the things
that provide a leg
up?

Product
Disadvantages

Where might
drawbacks exist?

User Pros
What do users like about the
product?

User Cons
What do users NOT
like about the
product?

TI CC1352P

− Thread,
Zigbee,
Matter

− Bluetooth
- Low power

consumptio
n

− Low power
consumptio
n while
supporting
Bluetooth

- Supports
multiple
radio
protocols

- Only use
2.4GHz
radio
frequencies
which can
be more
than
necessary
for
protocols
like Zigbee

- Part of simple link
system with
common simple
development
environment

− Not open-
source

− Designed for
general use

- Specific
applications
can do better

Espressif ESP32

- Bluetooth &
WIFI

- Microcontr
oller

- Multicore
- Low cost

- Wide
variety of
users

- Used in low
power IoT
products

- ESP-NOW
Protocol

- Proprietary
CPU
architecture
, limited
support

- Documenta
tion can be
lacking

- 512kB
memory:
not enough
for some
memory-
heavy
applications

- Very affordable
- Easy to use libraries
- Various resources
- Collaborative online

community for
hobbyists

- Can program with
Arduino IDE

- Low Range
- Only
- High power

consumption
for some
peripherals

[1]

[2]

sdmay25-27 - 35

Raspberry Pi Pico
W

- Wi-Fi and
Bluetooth
5.2 support

- PIO state
machines

- MicroPytho
n support

- Bootloader
allows
software to
be loaded
without a
special
programme
r

- PIO state
machines
allow for
flexible
peripheral
allocation

- Dual core
to allow
one core to
handle
radio and
one to
handle
application

264 kB memory may
not be enough for
some applications

- Cheap
- Good

documentation
- No need for extra

tools for
programming

- C/C++ SDK
setup can be
painful
relative to
other MCUs

STM32WB09KEV6

TR

- Has
multiple
run modes,
notably, for
low power

- ARM M0
processor
(well-
known
architecture
)

- Multiple
supported
frequency
bands

- Designed
for ultra-
low power

- This
microcontr
oller is
designed
for ultra-
low power
applications
, so it is
viable to
use when
power
consumptio
n is a
concern

- Small form-
factor

- Has an
ARM M0,
which is
not super
powerful

- When in
ultra-low
power
mode,
functionalit
y is heavily
limited.

- Not generally
purchased by
individuals for
hobbyist use

- Not
generally
purchased
by
individuals
for hobbyist
use

[3]

[4]

sdmay25-27 - 36

consumptio
n

TI

CC2540F256RHAR

- Low energy
SoC

- True Single-
Chip BLE
Solution
that can
run both
application
and BLE
protocol
stack

- Low-power
- True

system-on-
chip (SoC)

- Cost-
effective

- In-system
programma
ble flash
memory

- Limited to
BLE only

- Less
powerful
processor
compared
to
competitors

- Cannot
support
complex,
higher
power
applications

- Cost effective
- Low power

consumption
- BLE

implementations/su
pport

- Strictly
limited to
BLE
implementat
ions

- Not suitable
for complex
tasks.

[5]

sdmay25-27 - 37

The primary advantage our design will have over these others on the market will be documentation

and its open-source nature. Due to process constraints, it is unlikely that our design will be

capable of competing with many of these designs on performance, since they mostly use newer

processes than what we have available, which are close to two decades old. However, since

ChipForge typically deals with smaller programs for learning purposes, this is an acceptable

tradeoff, since they would be unlikely to use the extra performance of the other solutions.

 Technical Complexity

The project consists of three main engineering design systems, analog/RF, digital, and cyber

security. Each system consists of multiple subsystems, each containing one or more components.

We are implementing all these components using our understanding of complex circuit design

principles, computer architecture hierarchies, as well as hardware and software security standards.

For example, the PLL is a closed loop system, in which its output depends on the individual gain

and noise levels of each subcomponent as well as the closed loop transfer function. The Wishbone

crossbar uses interconnected circuitry to enable communication between N number of masters to

M number of slaves. The cyber security component design depends on strong foundations of the

AES encryption algorithms. Implementing a fully functioning radio microcontroller from scratch

mandates the collaboration of multiple cross functioning engineering teams and years of design

and testing. This is why our team will be scoping the project and implementing some of the radio

microcontroller systems. This is why our limited implementation does not enable transmit or

receive; however, it layers the foundations for other senior design teams to further contribute to

this project. Our limited implementation consists of the following systems:

1. Analog/RF subsystem:

a. Phase Locked Loop:

i. Phase frequency detector (PFD)

ii. Charge Pump (CP)

iii. Loop filter

iv. Voltage controlled oscillator (VCO)

v. Divider

b. Digital to analog converter

2. Digital subsystem:

a. RISC-V processor

b. Wishbone bus crossbar

c. DFF RAM

d. Peripherals

i. Timers

ii. GPIO

iii. I2C

3. Cyber security subsystem:

a. AES 128bit encryption

sdmay25-27 - 38

 DESIGN EXPLORATION

 Design Decisions

4.2.1.1. ZigBee Wireless Protocol

One of the first major decisions our group had to make was what wireless communication protocol

we wanted to implement in our design. After researching what protocols some other radio

microcontrollers support, we found that Bluetooth and ZigBee were some of the most common

with many market options supporting both. After discussion with Professor Duwe and members of

the Chip Forge club we concluded that ZigBee would be best for our design. Bluetooth could

eventually be added later but we wanted to focus on getting one wireless communication protocol

working first. We made this decision due to ZigBee using sub-GHz radio frequencies which made

tolerances for design layouts far laxer.

4.2.1.2. Reducing Scope

When beginning this project with Professor Duwe we did not know the full scope of what would be

required to design a radio microcontroller. So, our first couple weeks of work were researching just

that. We quickly came to realize that the scope of this project was much larger than we originally

anticipated, and that this project would take multiple teams across a couple of years. We then had

to decide which components of our complete design we would try to complete before passing the

project on to the next group. We chose to start with implementing one of two RISC-V cores, a

wishbone bus crossbar, DFF RAM, one DMA Engine, the flash controller, security acceleration,

digital to analog converter, phase-locked loop, reference oscillator, modulator, and some smaller

timing components. While we will not have a fully functioning radio microcontroller with just

these components, we aim to be able to create a product able to send data wirelessly by the end of

our project.

After working through the implementation portion of the project, some additional scope had to be

cut. This included the DMA engine and the UART and SPI peripherals. This was done because

while they are useful features, they aren’t critical to creating a minimum viable product since the

running of programs and transferring of data could be done with just the crossbar, RAM, extra core,

and I2C peripheral. In reducing the scope, we were able to take components further through the

design and testing process than we would have been able to with a larger scope.

4.2.1.3. AES Encryption

We knew from the start that we wanted to include some level of security on our microcontroller,

not only to secure it, but also so it can be used to teach wireless security. Encrypting data is

essential for wireless communication as radio waves are very easy to intercept and read. By making

the data unreadable without a key we largely negate this risk. There are many encryption methods

that could be used but we decided to use AES as it is what is required by the ZigBee protocol as well

as being one of the most popular and secure encryption methods.

4.2.1.4. PLL Divider

The design for the PLL divider was more complicated than we initially thought. Because the

division is required to operate at 930MHz, a simple programable flip-flop divider won’t work. Our

research resulted in two potential designs, fractional N, implemented as a first order sigma delta

sdmay25-27 - 39

divider, or integer N, implemented as a dual modulus divider. We decided to use the fractional N

divider because it creates less in-loop noise. The reduction in noise results in laxer benchmarks for

other components in the PLL.

4.2.1.5. PLL Phase Frequency Detector

The PFD design is the simplest subcomponent of the PLL yet there exist different design

implementations. The widely common circuit topology of the PFD uses the XOR, JK flops, or D-flip

flops. The XOR implementation is sensitive to the input duty cycle and will lock with phase error if

both inputs are not exactly 50% duty cycle. Unlike the exclusive OR implementation, the DFF

implementation is not sensitive to the input duty cycle. It is also easier to implement and less noisy

than the JK flip-flop implementation. This is the main reason that it has become the industry

standard in PFD design.

4.2.1.6. PLL Voltage Controlled Oscillator

Various VCO design circuits are used in PLLs. The main two circuit families are ring and LC

oscillators. The ring oscillator is generally easier to implement, requires less area, and has a more

tunable frequency range than the LC oscillator but has more phase noise. This is the main reason

we decided to implement a current-starved ring oscillator VCO.

4.2.1.7. PLL Charge Pump

The charge pump circuit could be implemented with 4 transistors. However, because it controls the

voltage on the VCO, any mismatching in current source/sink will cause the VCO to set a wrong

frequency, causing oscillation. The focus of any extra circuitry will be used to charge sharing, and

other signal transients.

 Ideation

The following describes the solutions presented for our wireless protocol and our PLL divider. Each

solution is given a summary explaining its functionality and appeal.

4.2.2.1. Wireless Protocols

With various wireless protocols, we identified potential options based off their widespread use and

documentation availability. The ones we found that were most commonly used across a majority of

the microcontrollers on the market utilized some form of Wi-Fi, Bluetooth, or Zigbee protocols.

The five major options we considered were Zigbee, BLE (Bluetooth Low-Energy), Wi-Fi (Wireless

LAN), LoRa, and NB-IoT.

4.2.2.2. Zigbee Wireless Protocol

Zigbee was one of the first options we considered, since it allows for lower frequency rates than

other wireless protocols. Specifically, it supports both 2.4 GHz and 915 MHz frequencies, which was

more applicable to our design due to the nature of the RF module we are implementing. Zigbee also

has relevant documentation regarding the IEEE standard 802.15.4, (since the protocol itself is built

on-top of this standard) which specifies the technical standards of low-rate wireless personal area

networks.

sdmay25-27 - 40

4.2.2.3. BLE Wireless Protocol

BLE or Bluetooth Low Energy was another option we highly considered working with, because of its

low power consumption, as well as its ability to support 2.4 GHz and the various amounts of

documentation available. The major downside was that BLE does not support lower frequencies,

and although it supports versions of Bluetooth up to Bluetooth 5.0, the lack of low frequency

support is ultimately why we choose not to proceed with BLE.

4.2.2.4. Wi-Fi Wireless Protocol

Wi-Fi as an option was considered, as it operates on 2.4 GHz and 5 GHz frequencies and supports

various IEEE standards 802.11a, 802.11b, 802.11ac, and more, proving that there are tons of

documentations on implementations, protocols, and specifications for wireless communications,

making implementation easier. It is also the most widely used wireless communication protocol.

Similar to why BLE was not considered, the lack of low-rate frequency support, and ultimately did

not fit our projects goals and specifications that utilize an RF module.

4.2.2.5. LoRa Wireless Protocol

The LoRa protocol utilizes radio communication techniques to achieve low power and long-range

communication. It also supports sub-gigahertz radio frequency bands and enables long-range

transmissions. While it contains a lot of the components we would like in our design, it ultimately

doesn’t work well in data transmission with low data rates, and slow data transmission. It also

would require its own network for deployment, which would limit its accessibility and ease of use

for our intended users.

4.2.2.6. NB-IoT Wireless Protocol

The NB-IoT protocol is a low-power wide-area network meant to connect devices that have low

bandwidth across long distances. Its low power consumption, ability to connect across long

distances, and low frequency support makes it enticing as a design choice, but has limited data

rates, latency issues, and coverage limitations (specifically indoors) despite being able to connect

across long distances. Its implementation also highly depends on the existing network

infrastructure. As our microcontroller is likely being utilized in environments with heavy

infrastructure such as large buildings and labs throughout the university, it didn’t make sense to

implement since it wouldn’t fit our intended user’s needs.

4.2.2.7. PLL Divider Designs

Of the various options for frequency dividers, we selected the first order delta sigma and the dual

modulus dividers because of their ability to operate in the GHz range, their common use in

frequency synthesizers, and their relatively simple design.

sdmay25-27 - 41

4.2.2.8. First Order Delta Sigma

Figure 6: First Order Delta Sigma

The first order delta sigma design uses fractional division. This allows the reference

frequency to be higher than the channel width. In our design, it means we can use a 10MHz

reference frequency instead of a 1MHz one, which results in a maximum division of 92.8

instead of 928. This reduction in division is what allows this divider to operate at higher

frequencies. The fractional division is accomplished by alternating integer division values

from a programable dual modulus divider in a sequence (Sigma Delta Input) that averages

to the desired value. For example, dividing by 92.8 would be achieved by dividing by 93 for

4 cycles and 92 for one cycle. This oscillation results in an average division of 92.8,

smoothed out by the loop filter.

sdmay25-27 - 42

4.2.2.9. Dual Modulus

Figure 7: Dual Modulus Divider

The dual modulus design uses integer division which limits the reference frequency to the

channel width, 1MHz. To achieve high frequency division, this design uses a fixed prescaler

at m and m + 1. This prescaler divides the frequency down to a functional operating

frequency for a simple programable flip-flop divider, N, to create the total divisor. Just a

prescaler of M+1 and N results in a division ratio of N(M+1) because M is fixed the divider

would only be create a divisor as a multiple of M+1. To allow the divider to create every

division ratio instead A second programmable divider A is added where A < N. A and N

count down at the same time and when A = 0 the prescaler is change from M+1 to M. This

results in a division ratio of A(M + 1) + (N - A)M. If N >= M, then every division ratio is

possible.

[6]

sdmay25-27 - 43

4.2.2.10. PLL PFD Designs

Figure 8: PLL Diagram

The phase frequency detector is the first component of the PLL. It detects the phase error between

the reference oscillator signal and the feedback signal from the divider. There are multiple circuit

topologies that could be used to make the PFD. However, a D flip-flop implementation is the

standard practice in the industry because it is simple to implement, does not depend on the duty

cycle, and has a constant gain of 1/2pi.

Figure 9: Phase Frequency Detector

[7]

[8]

sdmay25-27 - 44

Figure 10: Phase Frequency States

The UP and DN signals from the PFD will later be used to drive a charge pump, which sources or

sinks current to the loop filter, thus dynamically changing the voltage input of the VCO. The UP

signal is reflected by a positive 1 because it sources current and the DN signal is reflected by a

negative 1 because it is responsible for sinking current from the loop filter.

Because the charge pump and PFD combined should not be able to switch slower than twice the

delay from the PFD output to the Charge Pump. This causes a defective region formally known as

the dead zone, which can cause lower gain and increased jitter. To avoid dead zones, a delay has

been inserted between the RST signal of the DFFs and the AND gate. This will ensure that both UP

and DN signals will stay high for transistors to switch properly. As both UP and DN are high, the

net current (ICP) passing through the loop filter will be zero, causing no net change to the output

frequency.

Figure 11: PFD Gain Without Dead Zones

[8]

[8]

sdmay25-27 - 45

Figure 12: PFD gain with Dead Zone

Figure 13: Dead Zones Jitter

4.2.2.11. PLL VCO Designs

Due to the area restriction of the die and design complexity, we have decided to implement a

current starved ring oscillator. This type of VCO is very common among PLL designers because of

its small area and wide frequency tuning range.

The current-starved ring oscillator functions the same way as an N stage inverter ring oscillator

works. It connects a series of odd number of inverters in series, connecting the output node to the

input of the first inverter. Because there are an odd number of inverters, the output and input node

constantly change causing an oscillation. This oscillation is directly related to the delay of each of

the inverter stages (f = 1/2NT) where N is the number of stages and T is the delay per inverter.

Figure: Dead Zones Jitter

[8]

[8]

sdmay25-27 - 46

Figure 14: Ring Oscillator

The current-starved ring oscillator behaves in the same way. However, we add a current mirror,

which is controlled by a control voltage to tune the latency of each stage, thus changing the output

frequency. The minimum viable operating frequency occurs when the input voltage is less than the

threshold voltage of the at the control voltage FET. While the maximum linear operating frequency

occurs when the excess bias voltage of PMOS current mirrors M10, M12, M14 are greater than the

PMOS threshold voltage.

Given these equations, we plan to design a current starved ring oscillator that can linearly operate

at the Sub-GHz ZigBee frequency range. There have been designs within the online community

that were able to achieve such a high frequency using the Skywater 130nm process. Refer to

appendix 8.3.2 for detailed analysis.

Figure 15: Current-Starved Ring Oscillator

[8]

[8]

sdmay25-27 - 47

4.2.2.12. PLL Charge Pump Designs

Figure 16: PLL Charge Pump & Loop Filter

The conceptional design of the charge pump component is fairly simple, yet it requires careful

timing analysis. The charge pump receives the UP and DN signal from the PFD component and

sources or sinks current to the loop filter, thus changing the VCO Control Voltage. Because PMOS

is a better current source than NMOS, the transistor that switches the UP signal will be a PMOS

transistor preceded by an inverter. However, the transistor switches the DOWN signal will be an

NMOS because it is sinking current. Because the added delay in the UP stage causes a mismatch in

timing, a series of buffers will be added to both UP and DOWN stages to match that delay.

[8]

sdmay25-27 - 48

Figure 17: 3/2 Inverter Path

One of the main issues with this design is charge sharing. When both the DOWN or Up switches

are off, a zero net current should pass through. However, the highlighted M1 Drain to source

capacitors were initially at GND and/or VDD , and is now connected to a different potential (Vctrl).

This causes a possible voltage level disturbance at the control voltage node, causing slight

fluctuations in output frequency. This results in spurs in the frequency domain. Clock feedthrough

and charge injection also introduces irregularities which ultimately result in spurs.

In order to minimize this effect with the current structure, I will shift the switch FETs away from

the output voltage by switching M1 and M3 as well as M2 and M4 and redirect the signals

accordingly.

This conventional topology is commonly referenced in most research papers and books due to its

simplicity. A fully differential charge pump circuit is a more complex structure that aims to reduce

these effects, but it is not a feasible implementation for this project.

4.2.2.13. User Area RAM

After the OpenRAM investigation and lack of success with generating SRAM macros, another

option of DFF RAM was investigated. This RAM uses many D flip-flops in place of SRAM cells to

create a module that has the same functionality as RAM. This comes at a cost of density, with the

same amount of memory taking up significantly more space. The exact difference is difficult to

calculate, since the OpenRAM was not able to harden successfully. However, the DFF RAM was

already silicon proven, meaning that it had already been fabricated successfully, and easily

synthesized for an FPGA, which were two substantial advantages. If later teams have more success

with generating SRAM, it would also be straightforward to replace the DFF RAM with it. Due to

the large upsides of easy mapping to an FPGA and being silicon proven, the downsides of capacity

were seen as acceptable, and so the project moved to use DFF RAM for all RAM modules.

sdmay25-27 - 49

 Decision-Making and Trade-Off

The following discusses the characteristics considered when deciding what protocol and what

divider to use. Each criterion to ordered by importance with each option’s relevant information

listed. After the criterion, there is a discussion about our decision a how it best meets the criteria.

4.2.3.1. Wireless Protocols

The following characteristics were considered when determining which protocol our

microcontroller would follow. Frequency was the largest factor as higher frequencies would be

more difficult to implement correctly. Next security was considered, we knew we would be

implementing some sort of security for our radio communication so protocols with security

requirements that matched our team members’ skills sets were prioritized. Finally, the modulation

technique is used by the protocol. This was considered last because it is not a part of our scope but

will affect teams later on.

Frequency

Zigbee: 2.4GHz worldwide, 902MHz America

BLE: 2.4GHz

Wi-Fi: 2.4GHz, 5GHz

LoRa: 169MHz, 315MHz worldwide, 915MHz America

NB-IoT: Built onto cellular networks, bands between 600MHz and 1700MHz

Security

Zigbee: Advanced Encrypted Standard (AES)

BLE: Encrypted Advising Data (EAD)

Wi-Fi: Wired Equivalent Privacy (WEP), Wi-Fi Protected Access (WPA)

LoRa: Advanced Encrypted Standard (AES)

NB-IoT: Inherits Security form cellular network

Modulation

Zigbee: Binary Phase Shift Keying

BLE: Gaussian frequency shift modulation

Wi-Fi: Binary Phase Shift Keying, Quadrature Phase Shift Keying, QAM

LoRa: Proprietary spread spectrum modulation

NB-IoT: Orthogonal Frequency-Division Multiplexing

sdmay25-27 - 50

We decided to use the Zigbee protocol. In terms of frequency, Zigbee comes second, allowing the

microcontroller to be sub-GHz by using the American bands. For security, Zigbee uses AES, a

common security protocol that our team has experience with. Notably, LoRa operates at lower

frequencies and uses AES as well. We decided to use Zigbee because of its simpler and open-source

modulation scheme. The goal of our project is to be open-source and LoRa uses a proprietary form

modulation. Lastly, Zigbee’s ability to operate at 2.4GHz has the potential for future teams to

modify our design into a multiprotocol radio.

4.2.3.2. PLL Divider Designs

The following characteristics were considered when determining which divider our PLL would use.

The most important aspect of the divider was noise. Noise is the defining characteristic of a PLL so

minimizing noise through the divider was a priority. Next, we looked at the magnitude of the high-

speed division. The greater the divisor at high frequency, the more likely it is for the divider to fail.

Lastly, we looked at the complexity of the design. A more complex design takes up more of the limited

space on the die.

Noise

First Order Delta Sigma:

20log(10) less phase noise. Fractional spurring. Instantaneous frequency is not accurate.

Dual Modulus:

20log(10) more noise. No spurring. Instantaneous frequency is accurate.

High Frequency Division

First Order Delta Sigma:

Divide by 93 at high frequency

Dual Modulus:

Divide by 31(prescaler only) at high frequency

Complexity

First Order Delta Sigma:

M/M+1 is programable, range: 90-93. N is programable, range: 1-10. A is programable, range

0-9.

Dual Modulus:

M/M+1 is a fixed prescaler, 30/31. N is fixed divider, 30. A is programable, range: 2-28.

We decided to use the First Order Delta Sigma design. While it has a higher division ratio at high

frequency, it is still very low. It is a more complex design, but we decided the lower noise was worth

using a more complicated design. The Fractional spurring, caused by the periodic oscillation

sdmay25-27 - 51

between the two divisors, is difficult to quantify, however. Because of this, we plan to use the dual

modulus design as a backup design in case the spurring results in an unusable signal.

 FINAL DESIGN

 Overview

At a high level, our design is composed of an analog component and a digital component. The

analog component for our part of the project is a PLL capable of generating frequencies between

900 MHz and 928 MHz to transmit and receive using Zigbee. The digital component for our

project consists of a processor to run user programs, peripherals to interact with other devices, and

RAM to store information. These components are interconnected to form the final design.

As outlined in our requirements, there is a full system design that was planned out that

encompasses all of what the client wanted for the project, and a smaller subset of components that

contains what we implemented this semester. These are shown in the figures in section 4.3.2.

 Detailed Design and Visual(s)

Figure 18: Full Design - Multi-Year

sdmay25-27 - 52

Figure 19: Spring 2025 Design

4.3.2.1. Analog Subsystem

The analog subsystem for this part of the project is a frequency synthesizer implemented as a phase

locked loop (PLL) to operate 26 channels from 902 to 928MHz.

Figure 20: PLL Design

[9]

sdmay25-27 - 53

4.3.2.1.1. PLL Fractional N Divider

 To achieve fractional division at high frequency, the divider is designed as a dual modulus divider

with an accumulator to facilitate delta sigma modulation Figure # shows the high-level architecture

of the divider.

Figure 21: Fractional N Divider Design

4.3.2.1.1.1. Dual Modulus design

The dual modulus divider uses a prescaler, programmable counter, and a fixed divider, as shown in

Figure 21.

The prescaler divides the input frequency by either 9 or 10 depending on the control signal from

the counter, Prescaler_Control. Its output, Prescaled_Clock then serves as the clock for the fixed

divider and the counter.

The counter counts a number of clock cycles (Prescaled_Clock) determined by its control signal,

N+1. While counting, Prescaler_Control is set low. After reaching the set count value, the counter

sets Prescaler_Control to high telling the prescaler to switch from dividing by 9 to dividing by 10.

The output of the fixed divider, Count_Reset resets the counter to 0 to begin counting again.

The fixed divider further divides Prescaled_Clock down to complete the integer portion of the

division, outputting Clock_Out which also serves as Count_Reset.

This design results in a denominator value of:

𝑀 × (𝐴 − 𝑁) + 𝑁 × (𝑀 + 1)

Where: M, M+1 = prescaler values, N = counter value, A = fixed divider value

M and A are fixed therefore the denominator has a range of:

sdmay25-27 - 54

M × N ≤ M × A + N ≤ (M + 1) × A, where N ≤ A.

Importantly, incrementing N by one only increments the denominator by one. This allows the

divider to achieve its target value while maintaining the minimal step size.

4.3.2.1.1.2. Delta Sigma Modulation

To achieve fractional division, the accumulator varies the control signal to the counter between N

and N+1 per Clock_Out cycle. This causes the denominator to vary between 𝑀 × 𝐴 + 𝑁 and

𝑀 × 𝐴 + 1. By varying the denominator at specific ratios, the divider can create an average

denominator that is between N and N+1. As seen in Figure #, the PLL has a second order filter

which can be leveraged to integrate the denominator fluctuation into an even average fractional

value.

4.3.2.1.1.3. Choosing Values

Zigbee’s frequency ranges from 902MHz to 928MHz in 1MHz channels. Our reference frequency is

10MHz. Therefore, the divider must be able to divide by 90.2 to 92.8 with a 0.1 step size. The dual

modulus subset must be divide by 90, 91, 92, and 93, and the accumulator must be able to vary

between N and N+1 at a ratio of
𝐹

10
 where 0 ≤ 𝐹 < 10.

With these constraints, 𝑀 × 𝐴 = 90 and (𝑀 + 1) × 𝐴 ≥ 94. The nearest integer solution to this

system is M = 9, A = 10. Thus, (𝑀 + 1) × 𝐴 = 100. Since the maximum denominator required is 93,

N needs only fill the range: 0 ≤ 𝑁 ≤ 3.

With these values, the dual modulus subset will consist of a 9-10 prescaler, a 0-3 programmable

counter, and fixed divide by 10 divider.

4.3.2.1.1.4. Component Design – Prescaler

The prescaler is designed as a 0 to 9 counter and a 0 to 10 counter with Prescaler_Control

arbitrating the reset point. This necessitates a four-bit counter using four flip flops. The Sky 130nm

PDK is limited to D flip flops, so the design uses an XOR gate at the Data input of the flip flop to

create a T flip flop as shown in Figure 22

Figure 22: T Flip Flop

As 𝐴 ⊕ 𝐵 = 𝐴! ⊕ 𝐵!, the Boolean equation for D is either 𝐷 = 𝑄 ⊕ 𝑇 or 𝐷 = 𝑄! ⊕ 𝑇!

sdmay25-27 - 55

Table 5 contains the truth table for the toggle enable, T, for each flip flop label 1-4 where 1

represents the least significant bit. C is the control signal, Prescaler_Control.

Table 5: Prescaler Truth Table

Prescaler

Q4 Q3 Q2 Q1 C T1 T1! T2 T2! T3 T3! T4

0 0 0 0 0 1 0 0 1 0 1 0

0 0 0 0 1 1 0 0 1 0 1 0

0 0 0 1 0 0 0 1 0 0 1 0

0 0 0 1 1 1 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1 0 1 0

0 0 1 0 1 1 0 0 1 0 1 0

0 0 1 1 0 0 0 1 0 1 0 0

0 0 1 1 1 1 0 1 0 1 0 0

0 1 0 0 0 1 0 0 1 0 1 0

0 1 0 0 1 1 0 0 1 0 1 0

0 1 0 1 0 0 0 1 0 0 1 0

0 1 0 1 1 1 0 1 0 0 1 0

0 1 1 0 0 1 0 0 1 0 1 0

0 1 1 0 1 1 0 0 1 0 1 0

0 1 1 1 0 1 0 1 0 1 0 1

0 1 1 1 1 1 0 1 0 1 0 1

1 0 0 0 0 0 1 0 1 0 1 1

1 0 0 0 1 1 0 0 1 0 1 0

1 0 0 1 0 x x x x x x x

1 0 0 1 1 1 0 0 1 0 1 1

1 0 1 0 0 x x x x x x x

1 0 1 0 1 x x x x x x x

1 0 1 1 0 x x x x x x x

1 0 1 1 1 x x x x x x x

1 1 0 0 0 x x x x x x x

1 1 0 0 1 x x x x x x x

1 1 0 1 0 x x x x x x x

sdmay25-27 - 56

1 1 0 1 1 x x x x x x x

1 1 1 0 0 x x x x x x x

1 1 1 0 1 x x x x x x x

1 1 1 1 0 x x x x x x x

1 1 1 1 1 x x x x x x x

Because this component operates at the highest frequency, the design is focused on prioritizing

NAND and NOR gates due to their lower gate delay and minimizing the total number of gates. To

do this we use T! and Q! for flip flops 1, 2, and 3 when formulating the Boolean equations.

From this table we derived the Boolean formulas as follows:

𝑇1! = 𝑐! × 𝑄4

𝑇2! = 𝑄1! + 𝑄4

𝑇3! = 𝑄1! + 𝑄2!

𝑇4 = 𝑐 × (𝑄1 × 𝑄4 + 𝑄1 × 𝑄2 × 𝑄3) + 𝑐! × (𝑄4 + 𝑄1 × 𝑄2 × 𝑄3)

T4 can be rewritten as:

𝑇4 = (𝑐 ∗ (𝑄1! + 𝑄4!) × (𝑄1! + 𝑄2! + 𝑄3!) + 𝑐! × (𝑄4! × (𝑄1! + 𝑄2! + 𝑄3!)))!

This optimizes NAND usage while the total number of gates remains the same.

4.3.2.1.1.5. Component Design – Programmable Counter

The counter is designed to take a two-bit input, c0 and c1, setting the count value. The outgoing

control signal, max, is low while the counter is counting and high when the counter has reached

the target value. There is a reset signal that sets both flip flops to zero. Since the counter only needs

to count to three, it uses two flip flops. Table 6 contains a truth table that determines the state of

max based on c1, c0, reset, and the state of the flip flops, Q1 and Q2.

Table 6: Programmable Counter Truth Table

0-3 Counter

C1 C0 Q2 Q1 R Max

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 1 1 0

0 0 1 0 0 0

sdmay25-27 - 57

0 0 1 0 1 0

0 0 1 1 0 0

0 0 1 1 1 0

0 1 0 0 0 1

0 1 0 0 1 0

0 1 0 1 0 0

0 1 0 1 1 0

0 1 1 0 0 0

0 1 1 0 1 0

0 1 1 1 0 0

0 1 1 1 1 0

1 0 0 0 0 1

1 0 0 0 1 0

1 0 0 1 0 1

1 0 0 1 1 0

1 0 1 0 0 0

1 0 1 0 1 0

1 0 1 1 0 0

1 0 1 1 1 0

1 1 0 0 0 1

1 1 0 0 1 0

1 1 0 1 0 1

1 1 0 1 1 0

1 1 1 0 0 1

1 1 1 0 1 0

1 1 1 1 0 0

1 1 1 1 1 0

Max is found to be:

𝑚𝑎𝑥 = 𝑅! × (𝑐0 × 𝑐1 × 𝑄1! + 𝑐0 × 𝑄1! × 𝑄2! + 𝑐1 ∗ 𝑄2!)

The term (𝑐0 × 𝑐1 × 𝑄1! + 𝑐0 × 𝑄1! × 𝑄2! + 𝑐1 ∗ 𝑄2!) in max determines if the counter should be

counting. This was used to create equations for the flip flops:

sdmay25-27 - 58

𝐷1 = 𝑅! × 𝑄1 × 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 + (𝑅 + 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔)! × 𝑄1

𝐷2 = 𝑅! × 𝑄1 × 𝑄2 × 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 + (𝑅 + 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔)! × 𝑄2

The first term determines when to toggle from zero to one, the second term determines when to

stay at one.

4.3.2.1.1.6. Component Design – Fixed Divider

This component is very similar to the prescaler, just lacking the multiplexer for divide by nine.

Recall the Boolean equations from the prescaler:

𝑇1! = 𝑐! × 𝑄4

𝑇2! = 𝑄1! + 𝑄4

𝑇3! = 𝑄2! + 𝑄1!

𝑇4 = 𝑐 × (𝑄1 × 𝑄4 + 𝑄1 × 𝑄2 × 𝑄3) + 𝑐! × (𝑄4 + 𝑄1 × 𝑄2 × 𝑄3)

By removing the c! terms and inverting T! to T, the Boolean formulas for the flip flops become:

𝑇1 = 1

𝑇2 = 𝑄1 × 𝑄4!

𝑇3 = 𝑄2 × 𝑄1

𝑇4 = 𝑄1 × 𝑄4 + 𝑄1 × 𝑄2 × 𝑄3

4.3.2.1.1.7. Component Design – Accumulator

The accumulator takes an input, F, and repeatedly adds F to a running count. When overflow occurs,

the accumulator increases N by 1 for one output cycle. By controlling when overflow occurs, the

accumulator creates the denominator of the fraction. The numerator is the input, F.

Recall that the accumulator needs to create a fraction of
𝐹

10
. Since F is bounded by F < 10 the input is

limited to four bits. Figure 23 shows a block diagram of the described design.

sdmay25-27 - 59

Figure 23: Accumulator Architecture

This design creates the most even distribution of N and N+1 at the given ratio. For example, if F is 3,

the register will follow this sequence: 3, 6, 9, 2, 5, 8, 1, 4, 7, 0. Including the first cycle, cycles 4, 7, 10

have overflow. This matches the desired ratio of
3

10
 and distributes the variation as evenly as possible.

The adder is implemented as a full adder with access to the carry out for each bit. These are used to

create overflow logic. Creating a truth table for the said logic with eight input is not practical,

thankfully the limited overflow cases allow for the equations to created without one. For the

following equations a0-a3 refers to the adder output bits and c0-c3 refers to the carry bits.

𝐷1 = 𝑎0

𝐷2 = 𝑎1! × 𝑐3 + (𝑎3 + 𝑐3)! × 𝑎1 + 𝑎1! × 𝑎2 × 𝑐3

𝐷3 = 𝑎1! × 𝑐3 + 𝑎1 × 𝑎2 + 𝑎2 × 𝑎3!

𝐷4 = (𝑎1 + 𝑎2)! ∗ 𝑎3 + 𝑐0 × 𝑐3 × (𝑐1 + 𝑐2)!

To determine if overflow occurred:

𝑂𝑣 = 𝑎2 × 𝑎3 + 𝑎1 × 𝑎3 + 𝑐3

To increment N:

𝑁0_𝑜𝑢𝑡 = 𝑁0_𝑖𝑛 ⊕ 𝑂𝑣

𝑁1_𝑜𝑢𝑡 = 𝑁0_𝑖𝑛 × 𝑂𝑣 ⊕ 𝑁1_𝑖𝑛

sdmay25-27 - 60

4.3.2.1.2. PLL Transfer Function and Loop Analysis

4.3.2.1.2.1. VCO Transfer Function

The VCO is not linear in terms of output frequency because the output is sinusoidal function, and

the input is a DC voltage source.

𝑉𝐶𝑂(𝑠) =
𝑓𝑜𝑢𝑡

𝑉𝑐𝑡𝑙
= ℒ{𝐾𝑠𝑖𝑛(𝜔0𝑡)}

However, 𝑉𝐶𝑂(𝑠) is linear in terms of output phase

𝜑𝑜𝑢𝑡 = ∫ 𝜔
𝑡

0

(𝑡) 𝑑(𝑡)

We define a constant 𝐾𝑣𝑐𝑜 and set it equal to 2𝜋
𝑑𝑓𝑣𝑐𝑜

𝑑𝑉𝑐𝑡𝑙

𝜑𝑜𝑢𝑡 = ∫ 𝜔
𝑡

0

(𝑡) 𝑑(𝑡) = ∫ 2𝜋
𝑑𝑓𝑣𝑐𝑜

𝑑𝑉𝑐𝑡𝑙

 𝑉𝑐𝑡𝑙

𝑡

0

𝑑(𝑡) = ∫ 𝐾𝑣𝑐𝑜𝑉𝑐𝑡𝑙

𝑡

0

(𝑡)

𝜑𝑜𝑢𝑡(𝑠) = ℒ {∫ 𝐾𝑣𝑐𝑜𝑉𝑐𝑡𝑙

𝑡

0

(𝑡)}

𝜑𝑜𝑢𝑡(𝑠) = 𝐾𝑣𝑐𝑜𝑉𝑐𝑡𝑙(𝑠)

𝑉𝐶𝑂(𝑠) =
𝜑𝑜𝑢𝑡(𝑠)

𝑉𝑐𝑡𝑙(𝑠)
 =

𝐾𝑣𝑐𝑜

𝑠

4.3.2.1.2.2. Loop Filter Transfer Function

The transfer function of the loop filter is equal to its complex impedance which is equivalent to the

output voltage divided by the input current.

Figure 24: Loop Filter

𝑍(𝑠) =
𝑉𝑐𝑡𝑙

𝐼𝑐𝑝
= (𝑅 +

1

𝑠𝐶1
)//

1

𝑠𝐶2

𝑍(𝑠) =
𝑠𝑅𝐶1 + 1

𝑠(𝑠𝑅𝐶1𝐶2 + 𝐶1 + 𝐶2)

sdmay25-27 - 61

4.3.2.1.2.3. PFD/Charge Pump Transfer Function

The gain of the PFD and the Charge Pump is the slope of the line of on-current of the charge pump

compared to the total phase.

𝐾𝑃𝐷 =
𝐼𝐶𝑃

2𝜋

4.3.2.1.2.4. Closed Loop Transfer Function

𝑂𝑝𝑒𝑛 𝐿𝑜𝑜𝑝 𝑇𝐹 = 𝐺(𝑠) = 𝐾𝑃𝐷(𝑠) ∗ 𝑍(𝑠) ∗
𝐾𝑉𝐶𝑂

𝑠

𝑇ℎ𝑒 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 𝑑𝑖𝑣𝑖𝑑𝑒𝑟 𝑇𝐹 = 𝐷(𝑠) =
1

𝑁

𝐶𝑙𝑜𝑠𝑒𝑑 𝐿𝑜𝑜𝑝 𝑇𝐹 = 𝐻(𝑠) =
𝐺(𝑠)

1 + 𝐺(𝑠)𝐷(𝑠)
=

𝐾𝑃𝐷(𝑠) ∗ 𝑍(𝑠) ∗
𝐾𝑉𝐶𝑂

𝑠

1 +
1
𝑁

∗ 𝐾𝑃𝐷(𝑠) ∗ 𝑍(𝑠) ∗
𝐾𝑉𝐶𝑂

𝑠

4.3.2.1.2.5. Stability Analysis

Closed Loop Transfer Function

𝐻(𝑠) =
𝐾𝑃𝐷(𝑠) ∗ 𝑍(𝑠) ∗

𝐾𝑉𝐶𝑂

𝑠

1 +
1
𝑁

∗ 𝐾𝑃𝐷 ∗ 𝑍(𝑠) ∗
𝐾𝑉𝐶𝑂

𝑠

The loop dynamics and stability are hugely affected by the loop filter because it defines the

bandwidth.

Subsitute Z(s) with the proposed 2nd order filter,

𝐻(𝑠) =
𝐾𝑃𝐷𝐾𝑉𝐶𝑂(1 + 𝑠𝑅𝐶1)

𝑠3𝑅𝐶1𝐶2 + 𝑠2(𝐶1 + 𝐶2) + 𝑠 (
𝑅𝐶1𝐾𝑃𝐷𝐾𝑉𝐶𝑂

𝑁
) +

𝐾𝑃𝐷𝐾𝑉𝐶𝑂

𝑁

Define a constant K

𝐾 =
𝐾𝑃𝐷𝐾𝑉𝐶𝑂

𝑁

Using Routh Hutwitz Criterion to find stabilty limits compared to the loop filter resistors and

capacitors values:

Table 7: Routh-Hurtwitz Criterion

𝑠3 𝑅𝐶1𝐶2 𝑅𝐶1𝐾

𝑠2 𝐶1 + 𝐶2 𝐾
𝑠 𝐾𝑅𝐶1

2

𝐶1 + 𝐶2

0

𝑠0 𝐾 0

sdmay25-27 - 62

The sign of the second column is always positive regardless of the values of the resistor and the two

capacitors indicating that the loop is always stable.

4.3.2.1.3. PLL Noise Transfer Functions and FOM

Inject noise at the output of each block and get the transfer function of the output relative to that

input. We did not implement a reference oscillator divider in our design.

4.3.2.1.3.1. VCO Noise Transfer Function

𝑁𝑜𝑖𝑠𝑒𝑉𝐶𝑂 =
1

1 + 𝐺(𝑠)𝐷(𝑠)
=

1

1 +
1
𝑁

∗ 𝐾𝑃𝐷(𝑠) ∗ 𝑍(𝑠)
𝐾𝑉𝐶𝑂

𝑠

4.3.2.1.3.2. PFD/Charge Pump Noise Transfer Function

To reduce the PFD noise, increase 𝐾𝑃𝐷

𝑁𝑜𝑖𝑠𝑒𝑃𝐹𝐷 =
1

𝐾𝑃𝐷

∗ 𝐻(𝑠) =
1

𝐾𝑃𝐷

∗
𝐺(𝑠)

1 + 𝐺(𝑠)𝐷(𝑠)
=

1

𝐾𝑃𝐷

∗
𝐾𝑃𝐷(𝑠) ∗ 𝑍(𝑠) ∗

𝐾𝑉𝐶𝑂

𝑠

1 +
1
𝑁

∗ 𝐾𝑃𝐷 ∗ 𝑍(𝑠) ∗
𝐾𝑉𝐶𝑂

𝑠

4.3.2.1.3.3. PLL Noise Figure of Merit (FOM)

To compare the noise between different PLLs which operate at various frequencies, this FOM is

used to unify a noise metric. 𝑃𝐿𝐿𝑁𝑜𝑖𝑠𝑒 is the actual measured noise floor in dBc/Hz over 1Hz, 𝐹𝑃𝐹𝐷 is

the operating frequency of the PFD, and N is the divider value.

 𝑃𝐿𝐿𝑁𝑜𝑖𝑠𝑒 𝐹𝑙𝑎𝑡 = 𝑃𝑁1𝐻𝑧 + 20log (𝑁) + 10log (𝐹𝑃𝐹𝐷)

4.3.2.2. Digital Subsystem

The digital subsystem consists of two RISC-V cores, DFF RAM, a Wishbone crossbar, and

peripherals to interface with other devices or accelerate basic functions. Due to constraints, the

inter-processor FIFOs, one of the RISC-V cores, and the DMA engines will not be created during

our part of the project but are included in the design since they will be part of the system in future

iterations.

4.3.2.2.1. RISC-V Core

Several open-source options for generating a RISC-V core were investigated, since implementing

this from scratch would be time consuming and be likely to result in errors that could result in

non-working chips. The option that was chosen was VexRISC-V, which had several configuration

options for the core generation so that it can be tuned to increase performance or decrease die area

use. It also natively supports the Wishbone bus, which is the interface that is already used by the

Caravel harness processor. This enables easy interconnection between peripherals. The RISC-V

core will be clocked using the 10 MHz clock that is also used by the management SoC. This will

reduce additional clocking circuitry and make digital design easier by having all Wishbone devices

on a common clock domain.

sdmay25-27 - 63

4.3.2.2.2. DFF RAM

DFF RAM is a critical part of the design, since it provides an area for data to be stored both for

computation in a user program and for the data transmitted and received via Zigbee. The DFF

RAM will be implemented via a macro found on the Efabless marketplace. Since the macro layout

has already been completed by the creator, we will not have to do the layout ourselves, which will

save us significant time. In addition, the macro has already been tested, so we have confidence that

it will work in our final design. However, since the macro is not wishbone compatible out-of-box,

we will need to create our own wishbone interface for it. Finally, we are going to instantiate two 2

KiB DFF RAM macros for the user space RISC-V core. One will serve as its data RAM and the other

will serve as its instruction RAM.

4.3.2.2.3. Wishbone Crossbar

The Wishbone Crossbar is a module that connects all Wishbone masters, which includes the

management area RISC-V core and the user area RISC-V core’s instruction and data interface, to all

memory mapped slaves in the design. The slaves instantiated in the final design will be an I2C

module, two banks of 2 KiB of DFF RAM, a reset controller for the user area RISC-V core, and the

AES-128 hardware accelerator. The Wishbone Crossbar arbitrates access to these slaves, ensuring

that two masters never attempt to access the same slave at the same time. This prevents data

corruption or deadlock as a result of simultaneous access. It does not prevent typical concurrency

issues that arise in multithreaded programs, these must still be solved using programming

techniques. In addition to preventing simultaneous access to the same slave, the Wishbone

Crossbar also allows parallel access to different slaves. This allows for higher throughput, such as

allowing the RISC-V core in the user area to fetch instructions from one RAM bank while reading

or writing data from the other RAM bank.

4.3.2.2.4. I2C Controller

The I2C controller enables user programs to communicate with peripherals such as sensors, I/O

expanders, and memory modules. The controller will act as a master that will communicate to

slaves on the I2C bus. To enable the RISC-V cores (both user and management cores) to configure

the controller we created a wishbone register file. The register file can contain N 32-bit registers

and can be written and read from the wishbone bus. A separate read/write port is provided so that

any module (the I2C controller in this case) can directly read and write without having to be on the

wishbone bus. The register file for the I2C controller consists of five registers: Control, status,

address, write data, read data. The control register configures an I2C operation to be read or write,

include start and stop bits, and is used to start the I2C operation. The status register indicates if the

commanded I2C operation is still ongoing and it also indicates if the operation ended in a NACK

from the slave device. The address register stores the 7-bit I2C slave address that the operation will

act on. The write data register stores the 8-bit value that will be written to the I2C slave upon a

write operation. The read data register stores the 8-bit value that is read from the I2C slave upon a

read operation. By accessing these registers through the separate read/write port on the wishbone

register file, the I2C module is provided with all the information it needs to execute I2C operations.

4.3.2.3. Security Acceleration

The security acceleration component will implement the AES-encryption specified by the Zigbee

protocol, which will encrypt, and decrypt data transmitted and received on the microcontroller,

sdmay25-27 - 64

allowing for safe and secure transmission of data. It uses 128-bit keys to encrypt/decrypt data using

a symmetric block cipher.

 Functionality

To use the radio MCU, users will need to connect it to power and connect any devices that

they desire to be controlled by the radio MCU. Once everything is hooked up, a computer that

contains the code desired to be run on the MCU and the programming software must be connected

via a serial interface to the MCU. Then, the user can flash the program they wrote to the MCU,

which will provide it with instructions to execute. Once the MCU is running the program, the user

can then observe the signals output from the MCU, which are going to devices that the user has

plugged into the various outputs of the MCU. Now that the program is running, the user can

connect any wireless devices that support Zigbee to the radio MCU for wireless communication.

Once the chosen devices are connected, the user will be able to observe the communication

between the radio MCU and the devices by how they each respond to incoming signals. Overall, the

radio MCU can be used to control and communicate with devices given that it has been powered,

the devices have been connected (wired or wireless), and a program with the control code has been

flashed to the MCU.

 Areas of Concern and Development

If we implement all we have described, our design will fully satisfy the user requirements.

We would provide a platform that can be programmed by the user and control devices both wired

and wireless. However, our biggest concern is going to be getting all the components implemented

in our short timeframe. As seen in the “Personal Effort Requirements”, many of the tasks will take

over 50 hours to complete. So realistically, we cannot finish all the tasks in two semesters, but we

can finish a select few. The diagram below shows what elements of the design that constitutes our

“minimum implementation”, which we believe that we can have finished by next semester.

As shown in Figure 19, our minimum implementation contains many of the digital

components in the full design, but our analog section (RF Subsystem) contains much fewer

components. With the digital components shown, we provide the user with a processor to execute

their program, DFF RAM to store their program and act as memory, and peripherals that they can

hook up devices to. This allows the user to control wired devices such as servos, motors, and LEDs.

The RF subsystem is not complete, which means that radio communication will not be possible,

which does not satisfy the RF communication user requirements. However, we still plan to

implement a portion of the full RF subsystem, which then can be used by other teams who tackle

this project to get a head start on finishing the RF subsystem. To address these timeline issues, we

will be documenting our design and our implemented features well. Then, future senior design

teams or individuals from ISU ChipForge can take our design and working components and build

off them, approaching the full implementation which satisfies the user requirements.

Finally, another concern we have had while working on this project is not having all the

information to create prototypes for our components. To resolve this, we have been finding online

publications, talking with faculty members at ISU who have relevant experience, and attending the

ChipForge weekly meetings to ask questions about the Caravel Harness and the tooling. With all

these resources, we are confident that we can make substantial progress and implement our

minimum design implementation.

sdmay25-27 - 65

 TECHNOLOGY CONSIDERATIONS

The primary technology we are using for the design is the Caravel Harness from Efabless. This is a

platform that utilizes the Skywater 130nm process and has a management system on chip (SOC)

already designed for fabrication. The harness also contains a user space where digital and analog

designs can be inserted and are able to communicate with the management SOC as well as the pad

frame (where the GPIO pins are). Using the Caravel Harness, our biggest limitations are the lack of

documentation and the size limitations of the user area. So far, we have not found great

documentation on the Caravel Harness, so all our learning has been done by looking at examples

created by both Efabless and ChipForge as well as reading through the source code since the

Caravel Harness is completely open-source. For the size limitations, we are limited to a die area of

3mm x 3.6mm, which limits how many transistors we can fit in that space. Since using the Caravel

Harness is a constraint for our design, there is not a way to remove these limitations.

Efabless provides four tools for analog design, XSchem, Ngspice, Netgen, and Magic, for schematic

capture, simulations, LVS, and layout respectively. These tools represent a large part of the

unknown tools risk discussed earlier as no members of the team had used these before. These tools

were unintuitive to use and difficult to learn with limited documentation. Debugging issues was

challenging even when communicating with the team at Efabless because there was often no one

who was familiar with the issues we were facing. Ultimately, we were able to complete development

on the analog designs, but the tooling challenges stretched out the project timeline.

5. Testing

Testing is an integral part of the project, since the design cannot be altered after being submitted
for fabrication. To ensure correct functionality, testing will need to be performed throughout the
project and again after fabrication to make sure the implementation matches the design. Digital
and analog testing will be performed using computer simulations during the implementation
portion of the project. Digital testing will primarily use software during the bringup testing of the
project, and analog testing will use a frequency counter and a spectrum analyzer to make sure the
PLL is generating correct frequencies with acceptable noise figures.

 UNIT TESTING

Unit testing will focus on individual blocks outlined in the system diagram. These tests will be

relatively simple and focus on making sure the blocks function as intended.

 Digital

Digital unit testing will be performed using the simulator provided by the Efabless tools. These

tests can be automatically checked using a Verilog testbench to automate testing.

5.1.1.1. Wishbone Crossbar

- Verify that address mapping works correctly

- Verify that write/read data are sent to/from slaves correctly

- Verify that two masters can access different slave simultaneously

- Verify that two masters cannot access the same slave simultaneously

sdmay25-27 - 66

5.1.1.2. VexRISC-V Core

- Verify that a simple program can be loaded and executed correctly

- Verify that the processor generates correctly formatted Wishbone bus transactions

5.1.1.3. DFF RAM

- Verify that word (four bytes) reads and writes can be performed

- Verify that half-word (two bytes) reads and writes can be performed

- Verify that single byte reads and writes can be performed

5.1.1.4. I2C Controller

- Verify that the five wishbone register file registers can be written and read

- Verify that I2C reads and writes can be initiated

- Verify that ACK/NACK status is read and stored in the status register when writing to a

slave

- Verify that data is correctly written to the I2C bus

- Verify that data is correctly read from the I2C bus

- Verify that the start bit is sent correctly when configured to be included

- Verify that the stop bit is sent correctly when configured to be included

5.1.1.5. Security Acceleration

- Verify that configuration and data registers can be read/written via Wishbone bus

- Verify that round keys are stored properly in registers

- Verify that substitute-byte transformation, shift row, and mix column operations compute

the correct output

- Verify the key generated by expansion algorithm is properly copied and filled

- Verify the number of cycles encryption takes matches the expected target value

5.1.1.6. Phase Frequency Detector (PFD)

- Verify that it can set UP and DN signals as expected.

- Verify that the reset signal is functional.

5.1.1.7. Charge Pump and Filtering

- Verify that the transistors are ON for the same delay that is designed in the PFD

component. If the output fluctuates, increase the PFD Reset delay as necessary.

- Verify that the VCO control voltage does not change before PFD reset where both UP and

DN and high causing current sourcing and sinking of the charge pump.

- Verify that the PFD-Charge Pump gain matches the post-layout simulation gain.

5.1.1.8. Voltage Controlled Oscillator (VCO)

- Simulate VCO and measure its gain to confirm voltage required from the PFD. Also

measure maximum and minimum frequencies to ensure VCO functions in the necessary

range.

- Simulate VCO and measure its phase noise. This measurement can then be used to

characterize the expected phase noise for the entire system.

5.1.1.9. Fractional N Divider

- Simulate the divider and verify its maximum operating frequency is greater than 928MHz.

sdmay25-27 - 67

- Simulate the divider and measure its output frequency to confirm it functions correctly.

- Measure the simulated divider’s spurring and determine if it is necessary to swap to the

integer N design.

 INTERFACE TESTING

 Digital

The primary interface used for digital components of the design is the Wishbone interface, which is

governed by an open standard from OpenCores. Since most of the individual digital components

being tested have a Wishbone master or slave interface (or both), helper functions will be created

to verify correct Wishbone functionality during simulation. This will be done with Verilog

functions that can generate Wishbone transactions as well as check that the transactions

performed are the transactions expected. Interface testing on the digital side will be primarily

integrated with the unit testing, since the interface is integrated with the units.

 Analog

The PLL will use the pad frame for main connection to the inputs and outputs of the PLL as well as

two connections for testing its functionality and measuring its characteristics. The testing and the

PLL divider controls will be fed from the designed RISC-V processor. Apart from the divider control

signals, the PLL is mostly isolated from the rest of the digital and security components. Therefore,

after ensuring the functionality of the digital component, the main debugging interface will be

through the pad connections.

 INTEGRATION TESTING

The digital components are integrated and tested as a submodule and the analog components are

integrated and tested as a submodule. A full system simulation is not feasible due to computing

requirements.

 SYSTEM TESTING

 Digital

In addition to the unit tests to make sure each individual block functions as intended; additional

simulations will be run on the entire digital system. These will be somewhat limited in scope, since

simulating large programs would take large amounts of time which would slow down the

development process.

- Verify that simple test programs can be run correctly

o These are programs that access several peripherals (I2C, DFF RAM, etc.)

- Verify that system does not freeze or enter undesired states during program operation

- Verify that system comes out of reset in the correct manner

 Analog

The system testing plan of the PLL mostly consists of the closed loop simulations of the system,

ensuring optimal working conditions.

- Measure its output frequency to verify that it outputs the correct frequencies.

sdmay25-27 - 68

- Measure the simulated PLL’s phase noise to ensure a useable signal.

- Measure the simulated PLL’s lock time.

- Measure the simulated PLL’s settling time and confirm that it conforms to the Zigbee

standard. The ATSAMR30M18A, a commercial Sub-GHz ZigBee compatible RF

microcontroller, has a 170us settle time. We will design the PLL to have the same settle

time.

 REGRESSION TESTING

 Digital

Regression testing is conveniently enabled by the simulation toolflow. A single command can be

issued to automatically run all test cases for digital components to make sure that no functionality

has been broken by changes. All tests should be run when making changes to make sure that no

regression has occurred.

 Analog

Due to the closed loop nature of the PLL, any change to the subcomponents will ultimately affect

the overall functionality and characteristics. This is why the analog regression testing will consist of

rigorous simulation testing of the closed loop system whenever a characteristic of a subcomponent

changes. This will ensure we spot any design mistakes throughout the system integration and

testing process before fabrication.

 ACCEPTANCE TESTING

Originally, a test plan write-up for after fabrication was to be completed to help ChipForge

members test the chip after fabrication was completed. However, since fabrication became

impossible due to the shutdown, acceptance testing shifted to making sure that parameters were

met on the digital and analog portions of the design.

 Digital

Digital acceptance testing involved synthesizing the design for an FPGA and running sample C

programs on the FPGA and analyzing various signals to make sure that peripherals and the

Wishbone interface are functioning correctly. The synthesis flow also revealed important

information about how the design was being implemented in hardware. This checked for latches,

combinational loops, and logic that didn’t have a direct hardware mapping. Later stages of the

FPGA toolflow check that the design is capable of operating at our 10 MHz target frequency for the

system clock. In addition, we ran the digital design through the OpenLane flow to obtain a layout

for it. The layout is shown below (the two large rectangles are the DFF RAMs):

https://ww1.microchip.com/downloads/aemDocuments/documents/WSG/ProductDocuments/DataSheets/ATSAMR30M18A-SAMR30-IEEE-802.15.4-Sub-1GHz-Module-Data-Sheet-DS70005384.pdf

sdmay25-27 - 69

 Analog

5.6.2.1. PLL Testing Architecture

The Fref input signal will be connected to an off-chip crystal oscillator through the pad frame. The

loop filter will be connected off-chip which will save area for other necessary components.

Changing the loop filter will significantly change the loop dynamics if the values are properly re-

configured. Having an off-chip filter allows for individual VCO testing because the user has full

control over the VCO control voltage.

Figure 25: Digital Layout

sdmay25-27 - 70

Figure 26: Fractional N Divider

5.6.2.2. PLL Measurements and Characterizations

Low Frequency Oscillator

- Measure frequency output

- Should be a very stable 10MHz

VCO Open Loop Configuration

- DC Sweep the input of the VCO

- Connect the output to a spectrum analyzer

- Verify the VCO gain

- Verify the VCO bandwidth and stable operation at the 900MHz range.

- Measure the noise of the VCO

PLL Closed Loop System

- Verify output frequency matches each channel in the 915MHz Zigbee range

- Measure phase noise

- The phase noise of the PLL must be in the acceptable range for a standard Zigbee receiver.

- During startup measure lock time and overshoot

- Once the frequency is locked to a channel, change the divider control signal and measure

the settle time.

- The PLL can lock to each 1MHz channel from 902 to 928MHz

sdmay25-27 - 71

Fractional Divider

- Verify each subcomponent function as expected

- Verify divider system can create a denominator 90.2 ≤ N ≤ 92.8

- Frequency sweep prescaler

- Measure maximum operating frequency

 SECURITY TESTING

- Verify that the output of the plaintext is properly encrypted.

- Ensure each round function and round key is properly stored in each register.

- Each substitute-byte transformation, shift row, and mix column operation should be

consistent in its output

- Key generated by the expansion algorithm is properly copied and filled.

- Verify the number of cycles each encryption takes matches the expected target.

 RESUTS

 Wishbone Crossbar

The Wishbone Crossbar has been tested individually using a module that can generate Wishbone

transactions and a simple testbench containing only the Wishbone Crossbar and two dummy

slaves, which just cleanly terminate transactions and do not contain any special logic. This

testbench confirmed that address mapping, arbitration, and parallel access all work as intended.

See the waveforms below for more details.

Figure 27: Wishbone Crossbar Testbench Waveform

The first part of the waveform (0 – 2 µs) demonstrates the address mapping capabilities of the

crossbar. Master 0 initiates transactions to both slave 0 (address 0x30123400) and slave 1 (address

0x30123500). The transactions are then routed to the appropriate slave. The second portion of the

waveform (2 – 4 µs) demonstrates the same functionality with master 1 initiating the transactions.

The third portion of the waveform (4 – 4.5 µs) shows the arbitration capability. Master 1 loses

arbitration to master 0, and the transaction from master 1 stalls until master 0’s transaction has

sdmay25-27 - 72

completed. The final portion of the waveform (4.5 µs and on) shows parallel access, with both

master 0 accessing slave 0 and master 1 accessing slave 1 at the same time. This shows that the

Wishbone crossbar meets its requirements and functions as intended.

 DFF RAM

The DFF RAM was tested as an individual unit to verify that reads and writes worked as expected.

This was done using a simple Verilog testbench that wrote a series of data to each word in the RAM

and then read back the data to confirm that it was stored successfully. This also tested the

Wishbone wrapper that was put around the RAM macro to adapt it to the bus. The results are

shown in the waveform below.

Figure 28: DFF RAM Writes

In the waveform above, four 32 bit words are written to the RAM via a Wishbone interface at the

first four word sized addresses. These writes are clean Wishbone transactions, and adhere to the

specifications in the Wishbone V4 standard.

Figure 29: DFF RAM Reads

In this waveform, four 32 bit words are read from the same addresses that were written previously.

The data (0, 1, 2, 3) that is read back matches the data that was written. This indicates that the

RAM writes and reads function correctly and that RAM can save data to be recalled later. This

shows that the RAM meets its requirements.

 User Area RISC-V Core

Since the user area RISC-V core relies on RAM for both instructions and data, it was not possible to

test it by itself. As a result, this was done using the crossbar, management core, and DFF RAM.

The management core loaded a program into the instruction memory for the RISC-V core, and

then brought it out of reset. The program executed successfully, writing words to data RAM and

sdmay25-27 - 73

then verifying that they could be read successfully by the management core. A waveform from that

test is shown below.

Figure 30: RISC-V Core Instruction Fetching

The above waveform shows the first three instructions that are fetched by the user area RISC-V

core from the instruction memory. These match the instructions from the compiled program that

was loaded. This shows that the RISC-V core comes out of reset and begins fetching instructions

from the correct location, which indicates that the instruction portion of the core is connected and

functioning correctly.

Figure 31: RISC-V Core Data Memory Write

This waveform shows the RISC-V core writing a 32 bit word (1) to data memory. The full test

involves writing 8 data words (1-8) to the first 8 words of data memory. These can then be read out

by the management core, shown in the next waveform.

sdmay25-27 - 74

Figure 32: Management Core Data Memory Read

The final waveform shows that the data can be read back from the data memory. Combined, the

different parts of this test sequency prove that the user area RISC-V core can be programmed, come

out of reset, run a program, interact with the Wishbone bus, and write data that can be read back

by the management core. This fulfills the requirements for the RISC-V core to be considered

functional.

 I2C Peripheral

The I2C peripheral was tested in simulation to make sure that it could generate the transactions

necessary to interface with a simple I2C IO expander that was going to be used for a demonstration.

This involved multiple byte writes. The results are shown in the waveform below.

The waveform below shows a byte write of AB to I2C address 7B. Then another single byte write to

I2C address 7B happens, but the written value is 56 this time. No stop bit is sent after this final

write, so the bus is held in an idle state.

Finally, after we verified that our design worked in simulation, we loaded it onto the ARTY A7-100T

FPGA and hooked it up to an I/O expander that had some seven segment displays hooked up to it.

We wrote a program for the management SOC RISC-V core that configures the I2C wishbone-

compatible registers (from the wishbone register file) to perform writes to the I/O expander to

count on the seven segment displays. We verified that the writes were successful in hardware by

probing the SCL and SDA lines with an oscilloscope and by visually verifying that the seven

Figure 33: I2C Two Writes

sdmay25-27 - 75

segment displays were counting up. A sample waveform and a picture of the seven segment

displays are shown below:

Figure 34: Oscilloscope I2C Readings

sdmay25-27 - 76

 Wishbone Register File

Since the wishbone register file (used by the I2C controller) is generic and can be used by many

other modules, we created a separate test for it. The test is a system test where the wishbone

register file is instantiated with four registers alongside the Caravel harness description, which

contains our full digital design. Wishbone reads and writes are verified in addition to reads and

writes from the separate read/write ports. In addition, our system test is self-verifying using signal

value checks in Verilog. Below are some of the resulting waveforms showing the correct operation

of the wishbone register file.

Figure 35: I2C I/O Expander Testbench with Seven Segment
Displays

sdmay25-27 - 77

The waveform below shows a write of A to address 30001000 (register o), which is then read back.

The waveform below demonstrates what happens when a wishbone write and a write to the

separate write port happen at the same time. i_non_wb_dat always reads out the value of register

zero, which is the register being written to here. Here, o_non_wb_dat is set to AADDE0 and

i_non_wb_wen is 1, which means that a non-wishbone (separate write port) write of ADDE0 is

wanting to happen. But since i_wb_wen is also set to 1, the wishbone write takes precedence and

goes through. The wishbone write was to address 30001000 and the value in i_wb_data (ACCDDEF)

is written and can be observed on o_non_wb_dat. Immediately after the wishbone write is done, the

non-wishbone write executes, which is observed on o_non_wb_dat as well. This shows that the

module can arbitrate who is writing the register when wishbone and non-wishbone writes are

commanded at the same time.

 PLL Divider

To test a component in xSchem, the schematic is compiled into a symbol, then connected to

simulated input signals. As an example, Figure 38 shows the testbench for the prescaler.

Figure 36: Wishbone Register File Write and Read

Figure 37: Wishbone Register File Arbitration

sdmay25-27 - 78

Figure 38: Prescaler Testbench

Clk_in is simulated as a 928MHz square wave and ps_ctrl is set to simulate N = 3. The Corner block

in the top left sets what corners the component will be simulated with. All prelayout simulations

were on typical-typical corners (tt). The code snippet, s1, includes the standard cell libraries, sets

the simulation type, step size, and duration, and determines which nets are recorded. The complete

test results are on our GitLab page linked at the end of this document.

5.8.6.1. Prelayout Prescaler Results

The prescaler was tested for N = 0, 1, 2, 3 at 928MHz. As an example of test result analysis, Figure 39

shows an annotated waveform of the N = 3 test results.

sdmay25-27 - 79

Figure 39: Waveform of N=3 Test Results

Here we see the behavior is as expected when N = 3. The control signal is high for 3 cycles and gets

reset after 10 cycles. While low, the prescaler is dividing by 9, and while high it is dividing by 10.

5.8.6.2. Prelayout Programmable Counter Results

Using a testbench created as described above, the counter was simulated for N = 0, 1, 2, 3 at

103.11MHz, the maximum anticipated frequency of the prescaled clock. As an example of test result

analysis, Figure 40 shows an annotated waveform of the N = 2 results.

Figure 40: Waveform of N=2 Test Results

sdmay25-27 - 80

Here we see that a reset signal is received every 10 cycles, and max is high for 2 cycles immediately

after. The behavior of max is the opposite of expected. This is to compensate for the prescaler

inverting the control signal.

5.8.6.3. Prelayout Fixed Divider Results

The fixed divider only takes the prescaled clock as an input and as such only has one test case. The

simulation was run at 103.11MHz, the maximum anticipated frequency of the prescaled clock. Figure

41 is an annotated waveform of the results.

Figure 41: Prescaled Clock Divider Results

Analyzing the results is quite straight forward. We see that that clk_out has one positive edge every

10 clk_in cycles, thus the fixed divider behavior matches expected.

5.8.6.4. Prelayout Accumulator Results

The accumulator has a four-bit input, F, and a two-bit input, N, with a total of 26 input

combinations accounted for. The accumulator was simulated with each input at 10MHz. As an

example of test result analysis, Figure 42 shows and annotated waveform of the results when F = 7

and N = 1.

sdmay25-27 - 81

Figure 42: F=7 and N=1 Accumulator Results

As we can see, for a 10-cycle period, N = 1 for 3 cycles and N = 2 for 7 cycles resulting in an average

N of 1.7. The N = 2 cycles are also as evenly distributed as possible across the 10-cycle period. This

matches the expected behavior.

5.8.6.5. Prelayout System Results

After confirming the behavior of each component, the divider system was simulated. The test

bench is set up by connecting the symbols of each component together, simulating a square wave

input to the prescaler, and setting N and F for the accumulator. Figure 43 shows this full system

testbench.

Figure 43: Full Divider Testbench

sdmay25-27 - 82

By setting clk_in, F, N so that
𝑐𝑙𝑘𝑖𝑛

𝑁.𝐹
= 10𝑀𝐻𝑧, correctness can be verified by checking the average

period of clk_out is 100ns. The system was tested for 90.2 ≤ N.F ≤ 92.8 As an example of test result

analysis, Figure 44 shows an annotated waveform of the results for clk_in = 928MHz, N.F = 92.8.

Figure 44: CLK_IN = 928MHz, N.F =92.8 Accumulator Results

We can see that the accumulator correctly varies between N and N+1 at ratio of 2:8. The counter

correctly update ps_ctrl based on N. Circled in red in the top right corner, the period of 10 clk_out

cycles is 1us therefore the average period of one clk_out cycle is 100ns, matching the expected

behavior described above.

5.8.6.6. Poslayout Prescaler Results

After the prescaler is laid out as described in section #, The netlist is extracted from magic and

imported into a symbol in xSchem. This symbol can then replace the prelayout component in the

testbench. Due to time constraints, only one component for the divider could be laid out. The

prescaler was chosen because its high operating frequency is likely to cause the largest difference in

behavior after layout, and its maximum operating frequency limit the divider’s operating frequency.

The laid out prescaler was simulated for N = 0, 1, 2, 3. As an example of test result analysis, Figure

45 is an annotated waveform of the results for N = 3 at 928MHz with typical-typical corners.

sdmay25-27 - 83

Figure 45: N = 3 at 928MHz with tt corner

We see that the behavior remains the same after layout, dividing by 9 when ps_ctrl is low and

dividing by 10 when ps_ctrl is high.

Once functionality is verified, we performed a frequency sweep from 100MHz to 10GHz at slow (ss),

typical (tt), and fast (ff) corners. By graphing clk_in v.s. clk_out at ten points per decade, we can

clearly see what frequency the divider breaks down at each corner. To do this we modified the s1

code block as shown in Figure 46.

Figure 46: Prescalar Frequency Sweep Code

This sends results to a .txt file, “sweep_prescaler_results”. Using a python script the data was

compiled into a graph for each corner, shown in Table 8.

sdmay25-27 - 84

Table 8: Sweep Prescaler Results

We see that while both tt and ff exceed the required 928MHz operating frequency, ss falls short at

800MHz. This suggests that if the divider were fabricated, a portion of the chips would not function

properly. This issue was discussed with our client who determined that, as a learning tool instead of

a commercial product, he would only need half of fabricated chips to be successful. Because the

maximum frequency of the prescaler exceeds the required frequency for both typical and fast

corners, the results suggest that more than half of chips would be successfully fabricated.

 VCO

5.8.7.1. Low Voltage VCO

The figure shown represents a post-layout simulation at typical-typical corner at 1pF load. The

output is linear from as low as 0.6V to around 1V with 𝐾𝑣𝑐𝑜 = 3.3 𝐺𝑉/𝑠. This value is extremely

large compared to industry standards which revolves around tens of MV/s. My design is a factor of

a few hundred compared to the norm. However, a lower 𝐾𝑣𝑐𝑜 values will result in a narrower range

of operating frequencies to test the process.

ss tt ff

sdmay25-27 - 85

Figure 47: LV VCO Frequency vs Vctl

Figure 48: LV VCO Duty Cycle vs Vctl

Complete Results across all process corners

Table 9: LV VCO Full Results

Simulations Corner 𝐶𝑙𝑜𝑎𝑑 𝑉𝑐𝑡𝑙
@900MHz

𝐾𝑉𝐶𝑂in GV/s
@900MHz

Full Frequency
Range in MHz

%Duty
@900MHz

Pre-layout
SS

1fF
1-1.05 3.22 66 – 1770

51
1pF 42

TT
1fF

0.85-0.9 4.89 132 – 2230
52.5

1pF 48.9

sdmay25-27 - 86

FF
1fF

0.75-0.8 7.25 257 – 3900
56

1pF 55

Post-layout

SS
1fF

1.2-1.25 2.23 120-1200
42

1pF 32

TT
1fF

0.95-1 3.3 102 – 1790
51.7

1pF 47

FF
1fF

0.8-0.85 4.754 480-2310
55

1pF 50

5.8.7.2. High Voltage VCO

The signal swing of the control voltage of the 3.3V design is 1.15𝑉 ≤ 𝑉𝑐𝑡𝑙 ≤ 2.3𝑉 which is

significantly better than the initial 1.8V design.

Figure 49: HV VCO Frequency vs Vctl

Figure 50: HV VCO Duty Cycle vs Vctl

sdmay25-27 - 87

Table 10: HV VCO Full Results

Simulations Corner 𝐶𝑙𝑜𝑎𝑑 𝑉𝑐𝑡𝑙
@900MHz

𝐾𝑉𝐶𝑂in GV/s
@900MHz

Full Frequency
Range in GHz

%Duty
@900MHz

Pre-layout

SS
1fF

2.05-2.15 0.8589 201-1.03
65.2

1pF 26.4

TT
1fF

1.7-1.75 1.163 347-1400
53

1pF 47

FF
1fF

1.7-1.75 1.1614 347-1285
53

1pF 47

 Charge Pump

The source (blue) /deplete (red) currents as a function of a linear DC sweep of the output voltage

(Vctl).

Table 11: Current vs output voltage at process corners

1fF Capacitive load Voltage Current (uA)
SS 1.8 101.4
TT 1.8 103.3
FF 1.85 106

 PFD/Charge Pump

These tests indicate the functionality of the integrated PFD and the charge pump. The figure below

shows the current output of the charge pump at 1.8V output voltage. The figures also show an

effective reset of the PFD which is observed as the current output decreases to zero. The current

spikes are results of the current structure used as the charge pump mosfets try to achieve

saturation-level currents.

ss tt ff

sdmay25-27 - 88

Figure: 51 PFD Input

Table 12 PFD/Charge Pump Full Results

 Level Shifters

Unless otherwise specified, a 1fF capacitive load is used.

5.8.10.1. 3.3V to 1.8V Level Shifter

Simulations of the high frequency level shifter at 1GHz across process variations.

ss tt ff

sdmay25-27 - 89

Table 13: 3.3V to 1.8V Level Shifter Simulations

5.8.10.2. 1.8V to 3.3V Level Shifter

5.8.10.2.1. 1.8V to 3.3V Level Shifter Differential

The slow-slow corner did not optimally operate at the 10MHz. The maximum frequency is
between 5 and 7 MHz. I changed the topology to a current mirror shifter.

Table 14: 1.8V to 3.3V Level Shifter Differential

5.8.10.2.2. 1.8V to 3.3V Level Shifter Current Mirror

These simulations were conducted at 100MHz which surpasses the required 10MHz PFD frequency.

ss tt ff

ss @ 5MHz tt @100MHz

sdmay25-27 - 90

Table 15: 1.8V to 3.3V Level Shifter Current Mirror Simulations

6. Implementation and Design Analysis

 WISHBONE CROSSBAR

The Wishbone Crossbar is a critical part of the system, since it is responsible for routing bus traffic

to and from both VexRISC-V cores, memory, and peripherals. To make sure that the crossbar

functioned as intended, it was originally written in a fixed 2x2 (two master, two slave) format to

verify functionality. However, this approach was not suitable for the final design, since there would

be more than two masters and more than two slaves. To avoid having to do time consuming and

error-prone manual rewrites of the crossbar to add or remove masters and slaves, a Python script

was created that could procedurally generate the crossbar for any number of masters and slaves.

Once the script outputs were confirmed to work, the script was used to create the crossbar

instantiated in the top level of the design.

The crossbar follows the rules outlined in the design section to ensure that it has well-defined

behavior. This includes having a consistent and well-defined arbitration mechanism, preventing

two masters from accessing the same slave simultaneously. Whichever master requests access to a

slave first will be granted access provided nothing else is currently using the slave. There is no

mechanism for preemption, where one master can interrupt another master trying to access a slave.

This is primarily to reduce complexity, and because the Wishbone masters that are used in the

project are simple and do not hold onto the bus for more than three clock cycles if the slave

functions correctly. If two masters attempt to access the same slave in the same clock cycle, the

master connected to the lower numbered Wishbone interface will win arbitration, and the other

master(s) will stall until the first master has finished. This helps make sure that behavior is

consistent with arbitration, and by providing a priority system, the system can ensure high-priority

tasks won’t have to wait as long for resources.

ss tt ff

sdmay25-27 - 91

In addition to following the rules about well-defined behavior, the crossbar also provides additional

functionality to improve performance. If two masters attempt to access two different slaves at the

same time, both transactions can be run in parallel. This provides a substantial bandwidth increase

over a shared bus architecture, effectively multiplying the bus throughput by the number of

masters. In the final design, there are three Wishbone masters, including one to fetch instructions

for the second RISC-V core, which needs consistent bus access. By allowing parallel accesses, the

instruction fetch doesn’t prevent other masters from accessing other parts of memory, which allows

for much greater performance while also allowing the instruction memory to be modified

externally.

Figure 52: Sample 2x2 Wishbone Crossbar Architecture

sdmay25-27 - 92

 VEXRISC-V CORE

Since the existing RISC-V in the management area of the Caravel chip will not be accessible to the

end users, we are implementing our own RISC-V core in the user area using the existing VexRISC-V

generator. This core will run the user programs while leaving the management core to be saved for

any housekeeping or setup instructions that need to be executed. VexRISC-V makes use of the

SpinalHDL project, which is written in the Scala programming language. To aid with generating a

custom RISC-V core, many example generation configurations were provided in the VexRISC-V

GitHub repository.

To generate the RISC-V core we will be using for the project, we referenced the “wishbone”

example and the “smallest processor” example. To keep the die usage small and to keep the overall

core implementation simple, we decided to go with most of the settings from the “smallest

processor" example, which doesn’t have fancy features such as caches, smart branch prediction, and

designated multiplier and division modules. Then, we referenced the “wishbone” example to

modify the existing instruction and data bus structures to be wishbone compatible. Once this new

configuration was complete, we simply followed the build instructions on the VexRISC-V GitHub

repository to generate a single Verilog file that contained the entire RISC-V core. This was then

implemented into our top-level design and hooked up to the wishbone bus architecture.

 DFF RAM

Since we are adding a RISC-V core for user programs to run on, it will need an instruction RAM and

a data RAM. To implement these RAM blocks, we used an existing DFF RAM macro provided on

the Efabless marketplace. This gives us the layout in the 130nm PDK for a tested RAM module that

has a simple structure. The largest macro size is 2 KiB and takes up around 1.21 square millimeters

of die space. However, the macro is not wishbone compatible and only has a simple single-port

interface for reads and writes. So, we had to create a wishbone slave interface to enable the user

area RISC-V core as well as the management core to read and write the RAM modules. When

memory accesses are made on the cores, the core’s master wishbone signals are populated and the

DFF RAM modules need to be able to read those signals to perform the desired function and then

let the core know that it is done. After the DFF RAM macros were instantiated and hooked up to

the wishbone bus, we were able to connect them to the wishbone crossbar and verified that the

management core can read and write to them. See the testing section of this document for more

information on the DFF RAM testing.

 I2C CONTROLLER

We implemented the I2C controller as described in our final design. The I2C controller uses the

wishbone register file module to enable configuration from the wishbone bus. This means that any

device that can write to the wishbone bus can configure the I2C controller. Specifically, both the

management SOC RISC-V core and the user area RISC-V core can configure the I2C. The register

file was configured to have the five registers described in the design section, which are: control,

status, address, write data, and read data. To implement the controller that will assert the SDA and

SCL lines, we made use of a large Finite State Machine (FSM) in addition to a clock divider and a

bit counter. The FSM keeps track of what part of the I2C frame the controller is on and advances to

the next parts of the frame when appropriate. In addition, the FSM provides the clock divider and

the bit counter with their new values, which are applied on the next rising edge of the 10 MHz

input clock. The clock divider divides the 10MHz to 100KHz to be the I2C clock, SCL. The bit

sdmay25-27 - 93

counter keeps track of which bit of the address and data values that need to be sent out on the SDA

line. When all of these components work together, the I2C controller can perform reads and writes

on the I2C bus.

 AES SUBSYSTEM

We decided that the best way to implement the AES encryption subsystem was by utilizing a

preexisting open-source option. We chose an open-source option over creating our own encryption

block because AES is widely used so there are a lot of efficient and reliable open-source options

available to us. We considered many open-source encryption options and evaluated the pros of

cons of each to make sure we chose the best for our project.

 Open-Source AES Options

Table 16: Open-Source AES Encryption Options

Open-Source Option Pros Cons

E-Fabless AES • Extensive documentation
• Can be compacted to reduce

space
• Multiple cipher modes

including CTR
• Separate cipher and

decipher blocks
• Already tested and

implemented on multiples
ASICs and FPGAs

• Larger space
required for
decryption due to
key expansion

• The
implementation
process is iterative
making it slightly
slower

• E-Fabless
shutdown making
it harder to access

OpenCores tiny-AES
[10]

• Separate cores for 128-,
192-, and 256-bit encryption

• Pipelined architecture to
increase speed

• Multiple cipher modes
including CTR

• Has been synthesized and
tested on FPGAs

• May have issues
integrating with
the WishBone bus

• Encryption and
decryption are not
in separate blocks

Various GitHub
Options
[11][12][13]

• Well organized and modular
Verilog code that is easy to
understand or modify

• All GitHub options had
extensive testbenches to
make sure code was running
properly

• Many lacked good
documentation

• Not many cipher
modes are offered

• Untested on
hardware

E-Fabless AES

This option was available through the E-Fabless marketplace. Unfortunately, during this project,

the E-Fabless Corporation has shut down to a lack of funding, but we managed to gain access to the

repository with the AES encryption prior to their shutdown.

sdmay25-27 - 94

6.4.2 Selected Option

After analyzing the pros and cons of each of our options we decided to use the E-Fabless AES

option due to its versatility, documentation, and extensive previous testing on FPGAs and ASICs. E-

Fabless shutting down during this project may complicate things but as of now we still have access

to the repository and the documentation and will try to move forward with that.

 PLL

The main components of the PLL are designed in addition to some level shifters because of the

VCO and the Charge Pump use 3.3V supply instead of the 1.8V which the rest of the components

use. This increase was necessary for optimal operation and saturation of MOS devices.

 Fractional Divider

As derived in section 4.3.2.1.5.3 the denominator for the dual modulus subset will be:

𝑀 × (𝐴 − 𝑁) + 𝑁 × (𝑀 + 1)

Where 𝑀 = 9, 𝐴 = 10, and 0 ≤ N ≤ 3

Therefore, the prescaler values are 9-10, the fixed divider value is 10, and the counter range is 0-3.

The accumulator must create a fractional average in the form
𝐹

10
.

6.6.1.1. Prescaler

As derived in section 4.3.2.1.5.4, the prescaler will use four flip flops with Boolean equations:

𝑇1! = 𝑐! × 𝑄4

𝑇2! = 𝑄1! + 𝑄4

𝑇3! = 𝑄1! + 𝑄2!

𝑇4 = (𝑐 ∗ (𝑄1! + 𝑄4!) × (𝑄1! + 𝑄2! + 𝑄3!) + 𝑐! × (𝑄4! × (𝑄1! + 𝑄2! + 𝑄3!)))!

Figure 53 shows the schematic of the circuit Xschem. The flip flops are connected synchronously to

avoid a ripple delay.

Figure 53: Prescaler XSchem Schematic

sdmay25-27 - 95

All components come from the Sky130A standard cell library. The output is taken from the third

flip flop to create a more even duty cycle.

After verifying functionality as described in section 4.3.2.1.5.4, The prescaler was laid out on the Sky

130nm process in Magic. Due to time constraints, this is the only component that was laid out for

the divider. It was chosen because its high operating frequency results in the most significant

behavior changes during layout, and it determines the maximum operating frequency of the

divider. Figure 54 shows the final layout of the prescaler.

Clk_in is a delicate signal, being the output of the VCO. Because of this, clk_in is connected to each

flip flop using an H-bridge design that keeps the wire 10 microns away from anything running in

parallel to prevent signal interference. The H-bridge also limits the difference in distance from the

pin to the different flip flops.

6.6.1.2. Programmable Counter

As derived in section 4.3.2.1.5.5, the counter uses two flip flops and the output is:

𝑚𝑎𝑥 = 𝑅! × (𝑐0 × 𝑐1 × 𝑄1! + 𝑐0 × 𝑄1! × 𝑄2! + 𝑐1 ∗ 𝑄2!)

Where 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 = (𝑐0 × 𝑐1 × 𝑄1! + 𝑐0 × 𝑄1! × 𝑄2! + 𝑐1 ∗ 𝑄2!)

The Boolean equations for the flip flops are:

𝐷1 = 𝑅! × 𝑄1 × 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 + (𝑅 + 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔)! × 𝑄1

𝐷2 = 𝑅! × 𝑄1 × 𝑄2 × 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 + (𝑅 + 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔)! × 𝑄2

Figure 55 shows the schematic of the circuit in XSchem.

Figure 54: Final Prescaler Layout

sdmay25-27 - 96

This component consists of several more logic gates than the prescaler, however it operates at a

lower frequency. The white box represents the 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 equation.

6.6.1.3. Fixed Divider

As derived in section 4.3.2.1.5.6, the fixed divider uses four flip flops with Boolean equations:

𝑇1 = 1

𝑇2 = 𝑄1 × 𝑄4!

𝑇3 = 𝑄2 × 𝑄1

𝑇4 = 𝑄1 × 𝑄4 + 𝑄1 × 𝑄2 × 𝑄3

Figure 56 shows the schematic of the circuit in XSchem.

6.6.1.4. Accumulator

As derived in section 4.3.2.1.5.7, the input to the register is:

Figure 55: Counter XSchem Schematic

Figure 56: Divider XSchem Schematic

sdmay25-27 - 97

𝐷1 = 𝑎0

𝐷2 = 𝑎1! × 𝑐3 + (𝑎3 + 𝑐3)! × 𝑎1 + 𝑎1! × 𝑎2 × 𝑐3

𝐷3 = 𝑎1! × 𝑐3 + 𝑎1 × 𝑎2 + 𝑎2 × 𝑎3!

𝐷4 = (𝑎1 + 𝑎2)! ∗ 𝑎3 + 𝑐0 × 𝑐3 × (𝑐1 + 𝑐2)!

To determine if overflow occurred:

𝑂𝑣 = 𝑎2 × 𝑎3 + 𝑎1 × 𝑎3 + 𝑐3

To increment N:

𝑁0_𝑜𝑢𝑡 = 𝑁0_𝑖𝑛 ⊕ 𝑂𝑣

𝑁1_𝑜𝑢𝑡 = 𝑁0_𝑖𝑛 × 𝑂𝑣 ⊕ 𝑁1_𝑖𝑛

Figure 57 shows an annotated schematic of the accumulator in Xschem.

Figure 57: Accumulator XSchem Schematic

With the annotations it is clear how the implemented design matches Figure 58 from section

4.3.2.1.5.7.

sdmay25-27 - 98

Figure 58: Accumulator Design

6.6.1.5. Divider System

Using the architecture from section 4.3.2.1.5, the complete divider is assembled from the four

components covered in this section. Figure 59 shows the circuit in Xschem.

Figure 59: Divider XSchem Schematic

 Voltage Controlled Oscillator (VCO)

In my initial design, I utilized the 1.8V supply and the low power 01v8 transistor family. However,

due to some signal swing issues with the charge pump, I switched to 3.3V which forced me to use

the g5v0d10v5 family.

6.6.2.1. Low Voltage VCO

Initially, I used 𝐿𝑚𝑖𝑛 = 1𝜇 for the PMOS/NMOS current sources but later decreased it due to the

1.03V PMOS threshold drop. I decreased the length to 0.4𝜇 which sacrificed a more linear current

sdmay25-27 - 99

source but decreased the threshold voltage of the PMOS to around 0.9. This resulted in calculated

control voltage signal swing of 0.385𝑉 ≤ 𝑉𝑐𝑡𝑙 ≤ 0.9𝑉. I also set 𝑊𝑝 = 𝑊𝑛 to reduce 𝑉𝐸𝐵𝑁 and

resulted in slight enhancement 0.339𝑉 ≤ 𝑉𝑐𝑡𝑙 ≤ 0.9𝑉

To get good 𝐾𝑣𝑐𝑜 measurements, I swept 𝑉𝑐𝑡𝑙 from 0 to VDD and wrote a Ngspice script utilizing

TRIG/TARG function to automatically measure and calculate the frequency and duty cycle of the

oscillator. To visually plot data, I wrote a python script to read and plot the Ngspice output text file.

Some modifications were needed to the current and inverter channel areas to get the output

frequency at 0.8V close to the desired 900MHz range. I also skewed PMOS transistors (M10, M12,

M14) to draw more current to get close to 50% duty cycle.

Figure 60: LV VCO Final Schematic

Figure 61: LV VCO Output Buffer

sdmay25-27 - 100

Figure 62: LV VCO Final Layout

6.6.2.2. High Voltage VCO

After laying out and testing the low voltage VCO, I noticed some considerable degradation in the

duty cycle. I believe if the PMOS transistors of the inverters were
𝜇𝑛

𝜇𝑝
 instead of 2x larger than the

NMOS, the duty cycle would also approach 50%.

Final schematic after re-designing the VCO using the previously used approach and changing the
𝑊𝑝

𝑊𝑛
 accordingly:

sdmay25-27 - 101

Figure 63: HV VCO Final Schematic

Figure 64: HV VCO Output Buffer

 Charge Pump

The Charge Pump circuit is designed using the high voltage device family to effectively supply

100uA to 1mA with a variable off-chip resistor. I decided to use the ESD pad in the Caravel harness

which includes a 150ohm series resistor and the ESD diodes. The fixed resistor is accounted for

during design and testing. Refer to Appendix 8.3.4 for a generalized circuit analysis.

sdmay25-27 - 102

Figure 65: Charge Pump Schematic

 Phase Frequency Detector (PFD)

The PFD utilizes DFF, INV, and an AND gates from the 1.8V standard cell library. As discussed

previously, an adequate delay block is necessary for reset that is more than twice as much as the

accumulated delay between the PFD and the Charge Pump.

Figure 66: PFD Schematic with Reset Delay

sdmay25-27 - 103

 Level Shifters

6.6.5.1. 3.3V to 1.8V Level Shifter

This circuit is used to level down the 3.3V voltage at the output of the VCO to the 1.8V voltage level

at the input of the divider. This circuit needs to operate at the VCO high frequency.

This circuit uses a minimum sized inverter that uses the g5v0d10v5 transistor family. This is

because the 01v8 family can not handle gate to source voltages greater than the absolute maximum

of |1.95V|. The second inverter is inserted to invert the signal back and it uses the low voltage

transistors.

Figure 67: 3.3V to 1.8V Level Shifter Schematic

6.6.5.2. 1.8V to 3.3V Level Shifter

This circuit is used to level up the 1.8V voltage level at the output of the PFD to the 3.3V voltage

level needed to drive the Charge Pump drivers. This circuit needs to operate at the 10MHz

reference oscillator frequency.

6.6.5.2.1. 1.8V to 3.3V Level Shifter Differential

This circuit uses a basic differential structure to isolate the 1.8V signal from the 3.3V line and to

effectively drive the output inverter. This structure does not operate at effectively at the 10MHz

frequency in SS process corner. The inverter at the bottom of the figure that inverts the input signal

uses low voltage devices. However, the devices use the 3.3V devices to avoid breakdown as voltage

nodes approach 3.3V.

sdmay25-27 - 104

Figure 68: 1.8V to 3.3V Level Shifter Differential Schematic

6.6.5.3. 1.8 to 3.3V Level Shifter Current Mirror

I utilized this structure in my final design as it effectively operates at the required 10MHz

frequency. The first stage is a current mirror configuration that drives a minimum sized inverter.

All devices use high voltage device family.

Figure 69: 1.8V to 3.3V Level Shifter Current Mirror Schematic

 Loop Filter

I decided to use the conventional 2nd order passive filter for its simplicity and stability. Higher

order filters introduce poles that affect the stability of the closed loop PLL. Refer to Appendix xx for

complete closed loop stability analysis. Design the filter to have a bandwidth of 1/10 of reference

frequency and 60° phase margin for a damped transient response with low overshoot. I utilized the

Texas Instrument’s Clock Design Tools to calculate the individual component values for the given

1MHz bandwidth and 60° phase margin.

sdmay25-27 - 105

Figure 70: Second Order PLL Loop Filter Schematic

 Integrated PLL

This is the integrated PLL design with the PFD, charge pump, buffers, level shifters, 22kOhm off-

chip resistor, VCO, and full fractional divider. I included a 150Ohm resistor for the testbench to

match the ESD series resistor.

Figure 71 Integrated PLL

7. Ethics and Professional Responsibility

Regardless of the outcome, we wanted to streamline processes for future groups and the ISU Chip

Forge co-curricular. We knew that learning the tooling would be difficult, but we could provide

solutions and guides to help others avoid our mistakes. In this way, our team practices social

responsibility by paving the way for other students. With the closure of Efabless, we can no longer

meet our financial responsibility. Our client provided funding for fabrication that can no longer

happen. Ultimately, we cannot deliver the project as originally described. Honest communication

was important when working with our client to restructure our goals to best meet the remaining

requirements.

sdmay25-27 - 106

 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS

Table 17: Areas of Professional Responsibility and Codes of Ethics

Area of
Responsibility

Definition Relevant Item from
Code of Ethics

Team Interaction

Work Competence Completing assigned
tasks and on time.

IEEE Ethics 5, 6 Team members have
put in effort to learn
about new tools and
processes to ensure
that they are
competent during
design and
implementation.

Financial
Responsibility

Creating a product
that meets
expectations for its
price.

IEEE Ethics 3 Designed a product
that considered the
financial amount
provided, as well as
made it accessible to
the public through an
open-sourced
implementation.

Communication
Honesty

Being truthful about
work that has been
completed.

IEEE Ethics 5 The team has done a
good job with timely
communication via
Discord and reporting
hours.

The team has made it
very clear what work
was completed and
the state of the
project moving
forward.

Health, Safety, Well-
Being

Providing products
and services that
consider consumer
safety, heath, and
well-being

IEEE Ethics 1 The team is using
industry standards
and best practices to
make sure our final
design is safe and
works correctly to
provide a positive

experience for end
users.

Property Ownership Respecting the ideas
and products of
others.

IEEE Ethics 5 The team has
checked all code used
in the project to make

sure it is open-source,
and we can use it
without intellectual

sdmay25-27 - 107

property
infringement.

Sustainability Considering impact
on environment and
natural resources

IEEE Ethics 1 Our team is using an
older fabrication
process that already
exists, so fabricating
our design does not
require many
additional resources
that could hurt the
environment.

Social Responsibility The product or
service is beneficial to
its users and others.

IEEE Ethics 2, 10 Our team has
designed a product
that enables users to
learn about all the
inter-workings of it.
This product can be
used in many
educational contexts
and promotes critical
thinking and thinking
like an engineer.

Our team has performed well with work competence, as each member has contributed significantly

to the research and development of our project. Each member has been open-minded in creating a

positive environment where each member can freely express their creative ideas and obtain

feedback from one another. This signifies strong performance because each member actively

contributes to design decisions, research, and testing, and has completed their tasks on time. One

area that our team needs to improve is sustainability, as while our project does use existing

fabrication processes that wouldn’t require many resources, our design does not aim to benefit the

sustainability of the environment in many ways future to improve, there could be more

considerations on power consumption for environmental concerns.

 FOUR PRINCIPLES

Table 18: Four Ethical Principles

 Beneficence Nonmaleficence Respect for
Autonomy

Justice

Public Health,
Safety, and
Welfare

Our design will
implement
encryption to
protect user data

Our design is
designed with
best practices to
avoid potential
safety concerns

Design allows
complete user
control

Our design is
tailored towards
students and
general
education about
design process.

Global, Cultural,
and Social

Allows people
without many

Our design will
be accessible to

The open nature
of the design

The design's
documentation

sdmay25-27 - 108

resources to
learn about RF
MCUs

people with
different
experiences and
backgrounds in
engineering

allows different
users to use it for
their unique
purposes

and openness
combine to allow
users from
marginalized
communities to
use it

Environmental Efabless is
utilizing
previous
processes to
reduce waste

Our design is
using best
practices to
reduce excess
energy

Users will have
some control
over power
consumption

The Efabless
organization and
fabrication
facilities already
exist, so the
fairness of
environmental
impact is
determined by
Efabless and not
us.

Economic Allows for
students and
educational
institutions to
fabricate at a
much lower cost
than alternatives

The Efabless
organization
and fabrication
facilities
already exist, so
implementing
this project
does not have a
large economic
impact.

Users can decide
to fabricate this
design if they
want to or just
view the artifacts
associated with
the design for
free.

This project is
entirely open-
source and any
existing artifacts
we pull in are
open-source.
This means that
no one has to
pay to see our
artifacts.

One point that is important to the project is the intersection of Global, Cultural, and Social and

Respect for Autonomy. The open-source nature of our design will allow for users to use the design

as they please, without the limitations of licensing that would come with closed-source designs.

One of the largest constraints on the project is that it be open-source, so this will be implemented

by default, but we will also help support this with good documentation, which makes it easier for

users to do whatever it is they want with the product.

One point that we have not emphasized on the whole is environmental impact in any category.

However, our design is functioning as a proof of concept and a prototype, and thus will not have a

significant environmental impact, since only a small number will be produced. Additionally, we

have limited ability to change the environmental impact, especially around the manufacturing

process, since this is a constraint from our client. That being said, the process is based on older

technology, and as such is reducing waste by reusing said technology. This results in a lesser

environmental impact than trying to keep up with the most modern processes.

sdmay25-27 - 109

 VIRTUES

 Responsibility

The team defines responsibility as fulfilling the tasks assigned and expected of each other, in a

timely manner. Being responsible means also being held accountable of what you oversee and

making ethical choices. The team has met and will continue to meet the virtue of responsibility by

holding each other accountable for the tasks that are assigned and provide updates on the progress

of tasks. Team members will notify the team of any pending issues that may arise.

 Respect

The team defines respect as treating each other equally and showing regard for each other’s

abilities and contributions to the team. Being respectful to one another also entails listening to

each other’s ideas and valuing each other’s views. The team has and will continue to show respect

to each other by listening to each other's ideas and showing consideration for one another even in

disagreements.

 Flexibility

The team defines flexibility as a willingness to compromise with one another and embracing new

challenges and ideas. The team has already shown flexibility in establishing meeting times outside

of class and allowed each other flexibility in work during high stress environments. The team will

continue to show flexibility by being considerate of each other’s time and commitments and be

open to a workflow that best fits the schedules of each other.

 Individual Virtue Assessment

7.3.4.1. Ibram Shenouda

The virtue that I demonstrated throughout the semester is responsibility. As an electrical engineer

who is pursuing a career in VLSI design, this project hugely contributes to my overall goal of

becoming a design engineer. I believe I was responsible in learning new engineering concepts about

ASIC design and Phase Locked Loops. Because no undergraduate class covers PLL concepts and

design implementation, I took on the responsibility of educating myself these concepts to ensure

proper working conditions of the PLL.

The virtue that I believe that I have not demonstrated so far is flexibility. Due to my tedious

schedule and our large group contributors, it was time consuming to pick meeting times in the

beginning of the semester. After a few weeks, we decided to meet on Saturdays which mitigated

most of our time conflicts.

7.3.4.2. Noah Thompson

The virtue that I demonstrated the most throughout the first semester of this project is flexibility.

Our project requires a significant amount of analog design and our team only has one electrical

engineering student, Ibram. To implement our desired analog designs, I volunteered to learn

analog and mixed signal design to assist in the development of the analog components. I

recognized that, while it is not my expertise, we needed a larger analog team to implement the PLL.

My goal is to contribute as best I can, where I can to ensure we have a successful project.

sdmay25-27 - 110

The virtue I have not demonstrated as well is responsibility. Due to my lack of knowledge in the

mixed signal domain. I spent the start of the semester researching and learning to be able to assist

to the analog team. I did contribute to team assignments as much as I should have initially. This

improved as I became more comfortable with analog design and felt I could dedicate more time to

team assignments.

7.3.4.3. Nathan Stark

The virtue I have demonstrated most throughout this semester has been responsibility. I have

communicated clearly what my status on issues is, attended meetings to the best my schedule

allows, and taken on extra tasks to make sure we got all assignments completed on time.

Responsibility is important to me because I know how frustrating it can be to have to work with

people who don’t take responsibility, and I make it my goal to make sure that I am not contributing

to a negative experience for my teammates.

The virtue I have not demonstrated as well is flexibility. I had many other commitments this

semester and while I allocated a sufficient number of hours to the project, sometimes they didn’t

line up well with other team members. This sometimes resulted in miscommunications, which

sometimes resulted in inefficiencies where team members ended up waiting for things or I ended

up waiting for other team members.

7.3.4.4. Nolan Eastburn

So far, I have demonstrated the virtue of responsibility the best in this first semester of senior

design. I have clearly communicated what I will worked on and have kept to my commitments. At

times, I have pushed some commitments a few days ahead, but I have clearly communicated this to

make sure my teammates were okay with it. In addition, I committed to getting the seven-segment

project into the fabrication tapeout, which took a lot of time out of my week. I made sure that the

seven-segment project was implemented by the fabrication tapeout deadline to show that our team

knew how to take a concept and fabricate it.

I have identified that one of my weaker virtues is flexibility. I enjoy getting immersed into things I

enjoy such as embedded programming and digital design. Because of this, I at times did not

communicate with the analog team to understand their design. I was so sucked into my own work

that I did not take time to learn about what others were doing, which hurt my overall

understanding of the project. In the future, I plan to be more flexible by taking time to learn about

what my other team members are doing instead of getting sucked into my own work.

7.3.4.5. Ethan Kono

A virtue I have demonstrated throughout this project is respect for the rest of my team members by

being an active listener and open to new ideas. Respect is important to me because it enables a

positive environment where everyone feels they can contribute ideas freely and equally and

provides everyone with the opportunity to express their thoughts in a constructive manner.

A virtue I have not demonstrated throughout this project as well has been flexibility. It is important

to me because the team has been great at being flexible with meeting times and actively

contributing even when they are busy, but I have not contributed nearly as much when I have been

busy with other commitments. Going forward, I can be more flexible with my time by making this

project more of a priority and commit more of my time towards the project.

sdmay25-27 - 111

7.3.4.6. William Custis

The virtue I have demonstrated during this project is respect for my team members by trusting in

the quality of their work, especially when they were working on components that were out of my

area of expertise. Respect is an important virtue to me as without it a team will fall apart. A lack of

respect tears down trust and teamwork. By respecting my teammates, we are able to work together

better and be more efficient, which has been critical to our project.

A virtue that I have been lacking in during the course of this project has been flexibility. While I

came to as many of our out of class meetings as I could, I missed a few due to having conflicts at

that time. Flexibility is an important virtue in a group project, especially a group project of this size.

It will always be difficult to find a time for all six of us to meet as seniors in engineering. I could

demonstrate this virtue better by trying to make more time to attend our meetings or offer more

times that would work better for me.

8. Closing Material

 SUMMARY OF PROGRESS

As the semester comes to an end, so does the first iteration of this project. It is useful to take a step

back and summarize all that our team has accomplished. After all our hard work, we were able to

complete the designs, execute tests for the modules listed below. However, some of the analog

components do not have their layouts finished yet and are marked as such on the list below.

• Wishbone crossbar

• User RISC-V core

o User RISC-V core reset module

o Linker script for user programs

o User program loader software (management SOC RISC-V loads user programs)

• Instruction and data DFF RAMs

• I2C controller

• AES 128-bit encryption/decryption module

• PLL Components

o PFD – pre layout

o Low voltage VCO – laid out

o High voltage VCO – pre layout

o Divider

▪ Prescaler – laid out

▪ Programmable Counter – pre layout

▪ Fixed Divider – pre layout

▪ Accumulator – pre layout

o Loop filter – off chip

o Charge pump – pre layout

o Reference Oscillator – off chip

sdmay25-27 - 112

 VALUE PROVIDED

This project addresses the described users’ needs by providing an open-sourced radio

microcontroller that allows users to learn about the underlying components. The documentation

provided also allows for ISU chip Forge members to learn about advanced analog and digital

components that go into the fabrication of a radio microcontroller. This fits into the broader

context of producing material that can be used in learning environments regardless of experience

so that anyone interested in the production and development of radio microcontrollers can utilize

this project and its documentation. Examples of this value being provided is that the

documentation this project provides and the overall project and source code will be made available

to the ISU Chip Forge GitLab where members will have access to the work detailed in this

document.

 NEXT STEPS

There is currently no team set to take over this project and no organization to fabricate through.

The project will continue to be hosted on the ISU Chip Forge GitLab page for club members and

senior design to reference and learn from. We hope that the project will resume in the future when

a new organization to fabricate through is found. Prior to fabrication, the remaining analog

components need to be laid out, and the digital designs need to pass gate-level simulation. Then

the two subsystems need to be integrated. Testing the complete system is likely impossible due to

computing requirements. Fabricating our design will allow users to experiment with a physical chip

providing a unique and valuable learning opportunity.

9. References

[1] “CC1352P,” CC1352P data sheet, product information and support | TI.com. [Online]. Available:

https://www.ti.com/product/CC1352P. [Accessed: 07-Dec-2024]

[2] ESP32. [Online]. Available:

https://mm.digikey.com/Volume0/opasdata/d220001/medias/images/425/MFG_ESP32-

DEVKITC-VE.jpg

[3] “At just $6, raspberry pi pico W brings Wi-Fi to IOT designs - news,” All About Circuits.

[Online]. Available: https://www.allaboutcircuits.com/news/at-just-six-dollars-raspberry-

pi-pico-w-brings-wi-fi-to-iot-designs/. [Accessed: 07-Dec-2024]

[4] STM32. ST Microelectronics [Online]. Available:

https://estore.st.com/media/catalog/product/s/t/stm32wb09kev6tr.jpg?quality=80&bg-

color=255,255,255&fit=bounds&height=&width=. [Accessed: 2024]

[5] “TI CC2540F256RHAR ,” CC2540 | Buy TI Parts | TI.com,

https://www.ti.com/product/CC2540/part-

details/CC2540F256RHAR?utm_source=google&utm_medium=cpc&utm_campaign=ocb-

tistore-promo-epd_opn_en-cpc-storeic-google-

wwe&utm_content=Device&ds_k=CC2540F256RHAR&DCM=yes&gad_source=1&gclid=Cj0

KCQiAgdC6BhCgARIsAPWNWH04CRbtU3ZF1Rh5Fdk2EehsXaQrK8UR7MPKI9aB3ZX4Nt

m79qtXZgoaAj5YEALw_wcB&gclsrc=aw.ds (accessed Dec. 7, 2024).

sdmay25-27 - 113

[6] “Dual-modulus prescaler,” Wikipedia, 03-Dec-2024. [Online]. Available:

https://en.wikipedia.org/wiki/Dual-modulus_prescaler. [Accessed: 07-Dec-2024]

[7] “Digital PLL, All digital PLL, Analog PLL,” Movellus, 02-Apr-2023. [Online]. Available:

https://www.movellus.com/all-digital-pll-phase-locked-loop/. [Accessed: 07-Dec-2024]

[8] S. Palermo, 2024 [Online]. Available: https://people.engr.tamu.edu/spalermo/ecen620.html.

[Accessed: 07-Dec-2024]

[9] Frequency spectrum of sigma–delta modulator output bits. | download scientific diagram,

https://www.researchgate.net/figure/Frequency-spectrum-of-sigma-delta-modulator-

output-bits_fig10_2977787 (accessed Dec. 8, 2024).

[10] H. Xing, “AES,” OpenCores, https://opencores.org/projects/tiny_aes (accessed May 4, 2025).

[11] Gourav0486, “Gourav0486/AES-core-engine-,” GitHub, https://github.com/Gourav0486/AES-

Core-engine-?source=post_page-----2bef178db736-------------------------------- (accessed May

4, 2025).

[12] Ayusdixit, “Ayusdixit/AES: 128 bit AES implementation,” GitHub,

https://github.com/ayusdixit/AES (accessed May 4, 2025).

[13] Michaelehab, “Michaelehab/AES-Verilog: Advanced Encryption Standard (AES128, AES192,

AES256) encryption and decryption implementation in Verilog HDL,” GitHub,

https://github.com/michaelehab/AES-Verilog (accessed May 4, 2025).

[14] “A study on hardware attacks against microcontrollers,” Federal Office for Information

Security, https://www.bsi.bund.de/EN/Service-Navi/Publikationen/Studien/Hardware-

Angriffe/Hardware-Angriffe.html (accessed Dec. 7, 2024).

[15] “Attacks against industrial machines via Vulnerable Radio Remote Controllers: Security

Analysis and Recommendations,” Trend Micro (US),

https://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/attacks-

against-industrial-machines-via-vulnerable-radio-remote-controllers-security-analysis-

and-recommendations (accessed Dec. 7, 2024).

10. Appendices

 OPERATION MANUAL

This section describes the basics of using various parts of the design. It assumes that you have the

repository checked out on a computer that has access to both the ChipForge toolchain and the

ChipForge command line tool. If you do not have these, please see the ChipForge documentation

sdmay25-27 - 114

(https://git-pages.ece.iastate.edu/isu-chip-fab/documentation/#/intro/index) for installation

instructions. The pages in the ChipForge documentation will also serve as a good introduction to

the basics of the toolflow. Please have a basic understanding of these tools before continuing this

guide.

You will also need access to an FPGA if you want to run the design on hardware. Currently the only

officially supported device by the ChipForge toolflow is the Digilent Arty A7 100, although the

design has unofficially been ported to the Digilent Basys 3, which also uses an Artix 7 FPGA. The

general process of porting to other Xilinx FPGAs is described in this manual, but other vendors

have not been tested.

 Creating, Compiling, and Executing Programs for the User Area RISC-V Core

Inside of your local checkout of the git repository, enter the ‘programs’ folder and create a new

directory with the name of your program. Inside this folder, create a C file that matches the name

of the folder. This will be the primary file for your program. Next, copy the example Makefile from

the example folder inside of ‘programs’ and modify it to compile your C program. You can now

write your C program. Keep in mind that all the addresses contained in the management area are

not accessible to the user area core. A list of accessible addresses and their functions are shown

below.

Table 19: Address Map for Wishbone Crossbar

Address Function
0x30000000 Instruction RAM for RISC-V core.

WARNING – Do not modify unless you
know what you are doing, this can cause
unpredictable behavior.

0x30000800 Data RAM for RISC-V core. Also accessible
to the management core. By default, the
stack pointer for the user area RISC-V core
is set to the end of this memory.

0x30001000 Processor reset block. Writing a ‘1’ to this
address will reset the processor, and it will
remain in reset until the register is cleared
to ‘0’. This cannot be done by your
program, since the processor will not be
active if reset. Use with caution.

0x30001800 I2C module, more details on interfacing
with this module are provided in section
10.1.2.

After writing the program, change back into the top level of the repository and run ‘make program-

<name>’, where <name> is the name of the program you created. This will compile your C

program into a .hex file, which a Python script will then convert into a simple array. This array will

be placed in a C header file, which can be included in management area code with ‘#include

<generated/second_core.h>’.

In a management area program, the array ‘PROGRAM’ will contain a series of 32 bit words, each

one representing an instruction for the user area RISC-V core. Write each of these words to the

https://git-pages.ece.iastate.edu/isu-chip-fab/documentation/#/intro/index

sdmay25-27 - 115

instruction RAM starting at 0x30000000. Then, write a ‘0’ to the address 0x30001000 to take the

second core out of reset and allow it to begin running.

 Using the I2C Module

The digital design contains an I2C module that can communicate with I2C slaves at the base I2C

frequency of 100 kHz. It does not support multi-master arbitration but does support clock

stretching. The interface is controlled by using the five registers described below.

Table 20: Register Summary for I2C Module

Register Offset Field Field Name Function
Control 0x00 Control signals for module.
 [0] BEGIN Writing this to a ‘1’ causes the I2C module

to begin a transaction.
 [1] RW Writing this to a ‘1’ causes the transaction

to be a read, ‘0’ is a write.
 [2] START If set to ‘1’, the module will issue a start to

the bus and resend the address and R/W
bit. If the master already has control of the
bus, this will be a repeated start. Note that
if the master does not have control of the
bus, a start will be sent regardless of this
bit state, since this is required by the
protocol.

 [3] STOP If set to ‘1’, the module will send a stop
condition and release the bus after the
transaction, otherwise, the master will
retain the bus.

Status 0x04
 [0] BUSY If this bit is a ‘1’, the module is currently

executing a transaction, if it is a ‘0’, the
module is available.

Address 0x08
 [6:0] ADDR This 7 bit field is the address of the I2C

slave to be written to/read from. 10 bit
addressing is not supported.

Write Data 0x0C
 [7:0] WDATA This 8 bit field is the data to be written to

the slave if the transaction issued is a
write.

Read Data 0x10
 [7:0] RDATA This 8 bit field will contain the data read

from the slave on a read transaction after
the transaction is complete.

To begin a single-byte write transaction, place the address and data in the appropriate registers,

write the R/W bit in the control register to 0, and set the BEGIN, START, and STOP bits to 1. If you

wish to do a multi-byte write, the process is identical, except that the START bit should only be set

sdmay25-27 - 116

on the first byte and the STOP bit should only be set on the last byte. Reads function the same

way. For repeated starts, simply set the START bit when you need the repeated start to occur.

Make sure to set the R/W bit to the appropriate value, since it may be different.

 USER JOURNEY MAP

Figure 72: User Journey Map

 SECURITY ANALYSIS

The security analysis appendix is an overview of the potential attack vectors and vulnerabilities on

microcontrollers and radio frequency modules. This appendix splits the analysis into two major

sections, 8.3.1.1 which covers the vulnerabilities in microcontrollers, and section 8.3.1.3, which

covers the vulnerabilities in radio frequency modules. Each section covers how the different attack

vectors work in concept, how they might affect the system, and proper countermeasures and

solutions for each attack vector or vulnerability. The conclusion is meant to serve as a way to

analyze which attack vectors are of the highest priority and concern within the context of this

project.

sdmay25-27 - 117

 Attacks & Vulnerabilities in Microcontrollers

Control Flow Manipulation Attacks:

Control flow determines the order in which instructions are executed. Attacks on control flow aim

to modify the flow of execution on a program by executing malicious code or prevent code

execution to bypass password checks or encryption. Some of the most common types of physical

attacks on embedded devices and microcontrollers according to the Federal Office for Information

Security [10] are on voltage and clock glitching, electromagnetic fault injection (EMFI) and laser

fault injection (LFI).

Fault Attacks:

Fault attacks are a subunit of control flow manipulation attacks that specifically used for causing

“erroneous behavior” such as bypassing execution of specific instruction(s). Corrupting data on

memory, corrupting data during a bus transfer, modifying the instructions in the program, or

changing the program counter to execute instructions in different orders [14].

Side-Channel Attacks:

- Physical properties of the microcontroller can be observed to obtain a cryptographic secret.

- Power consumption and electromagnetic emissions are the most exploitable in

microcontrollers

Encryption & Key Distribution:

Encryption is the bare minimum of security in wireless systems. When communicating wirelessly

with radio frequencies it is very easy for messages to be intercepted. While most information being

transmitted using this microcontroller will not be of critical importance, having the choice to

encrypt a message or not could provide a good learning opportunity for students or club members

to learn about the importance of encryption.

AES is the encryption recommended by ZigBee documentation. Additionally, it is one of the most

popular encryption methods for wireless communications and is incredibly secure.

AES is a symmetrical cipher so the receiving device will need to have the key used to encrypt the

message to be able to decrypt it. Data is encrypted using the network key on a ZigBee network and

every device on the network has the same password key. There are a couple options the ZigBee

protocol supports for distributing the network key to new devices, but we will focus trust center

networks for this project as we will always have our one device, we trust being our own

microcontroller. When a new device wants to join the network, it will contact the trust center

which can then send a copy of the network key to the new device, directly disallowing it from

joining, or just ignore it preventing it from joining the network. For the purposes of our project, we

will use a simplified version of this where we either allow or disallow the device from joining as we

will likely only be ever communicating between our device and one other.

sdmay25-27 - 118

 Countermeasures and Solutions for Vulnerabilities in Microcontrollers

Countermeasures to control flow manipulation attacks can be implemented in both hardware and

software, and which one is implemented depends on the scenario. Listed below are the pros and

cons of both hardware and software implementations.

- Hardware Pros:

o Less impact on system performance as it doesn’t use execution time from the CPU

- Hardware Cons:

o Can be expensive to implement

o Cannot be retrofitted after development

o Require modification of the system hardware and potential additional peripherals.

- Software Pros:

o No special hardware is required

o Retrofitting of additional security measures can be done via software updates

- Software Cons:

o Compiler optimizations may have to be disabled

o Increases code base and complexity for developers

The actual solutions for control flow attacks include the following list below. Each of these

potential solutions can be implemented in hardware or software, depending on where or how it is

implemented, but are all potential options to consider when mitigating control flow manipulation

attacks.

Classic Loop Hardening:

- Involves duplicating loop counters & exit conditions so that each condition is checked

twice before exiting the loop.

- Mainly utilized to detect fault injection attempts.

Instruction Redundancy:

- Execute critical instructions at least two times, to ensure the same result is returned,

meaning even if instructions are skipped, the critical instruction will still execute, even if it

is skipped.

Function Duplication:

- Involves duplicating a function, and having both functions take the same input, but store

the results in different variables and compare both after execution to detect fault attempts.

Countermeasures to side-channel attacks:

Masking:

- Involves applying random masks to secret values in order to create secret shares that are

used for cryptographic computations [15].

Blinding:

- Like masking but utilizes an algorithm to mask sensitive values [15].

sdmay25-27 - 119

Shuffling:

- Hides the order that values are processed, and schedules operations at random, which

thereby hiding the side-channel measurements with secret information [15].

 Attacks & Vulnerabilities in Radio Frequency Modules

Replay Attacks:

“Replay attacks record the RF packets and replay them to obtain basic control of the machine” [15].

This involves the attacker intercepting a valid message and then either delays it or resends it or

misdirects it. In extreme cases where sensitive information such as passwords are leaked, an

attacker may retransmit the sensitive information after a delay, leaving little indication that the

data was even stolen or compromised.

Command Injection:

Command injection attacks in a radio frequency context often involve the attacker recording

commands via a data transmission of radio frequency module, capturing data and utilizing reverse

engineering to derive other commands and then retransmitting known commands to attack a

system. “Knowing the RF protocol, the attacker can arbitrarily and selectively modify RF packets to

completely control the machine” [15].

E-Stop Abuse:

“Attack can replay e-stop (emergency stop) commands indefinitely to engage a persistent denial-of-

service (DoS) condition” [15]. This type of attack looks to take advantage of specific instructions

sets or features on radio frequency modules, ones that specifically send signals to the receiver unit

in an emergency that cuts power off. Attackers who intercept these commands can create denial of

service situations by preventing the radio frequency module from transmitting any data by

consistently sending an e-stop command to prevent it from running.

Malicious Repairing:

“The attacker can clone a remote controller or its functionality to hijack a legitimate one” [15]. This

attack mostly applies to radio frequency modules that allow for a “cloning” feature that allows

creation of copies of transmitting units. A clear example would be having multiple transmitting

units but only one receiver, which would allow multiple operators to control a single receiver.

Malicious Reprogramming and Remote Attack Vectors:

“The attacker ‘trojanizes’ the firmware running on a remote controller to obtain persistent, full

remote control” [15]. This attack utilizes scenarios where IT endpoints are not secured, allowing any

firmware to be flashed to the microcontroller. If the microcontrollers are not code-protected and

allow for flashing of the microcontroller’s memory to reassign and reconfigure a device before it is

installed or sold, allowing for potential backdoors or harmful code to be installed on the device. In

cases like this project that are open-sourced, it is important to consider.

 Countermeasures and Solutions for Vulnerabilities in Microcontrollers

Countermeasures for replay attacks:

sdmay25-27 - 120

- Encryption

- Authentication from network protocol

Countermeasures for command injection attacks:

- Utilize open-standard RF protocols

- Encrypted communication protocols

- Authentication

Countermeasures for e-stop abuse attacks:

- Encrypted data transmission

- Limited access control to sensitive commands

Countermeasures for malicious re-pairing attacks:

- Code obfuscation makes it difficult to reverse engineer.

- Secure boot mechanisms, ensuring integrity of firmware

Countermeasures for malicious re-programming and remote attack vectors:

- Firmware rollback capabilities to restore to previous versions in case of compromise.

 Conclusion

Due to the scope of this project, not every security concern can be implemented. The

vulnerabilities are listed below based on the level of priority, being either high priority, medium

priority, or low priority, with each choice being made regarding how likely the attack is to take

place, its difficulty to pull off, and how reasonable it is given our projects environment.

High-Priority:

- Encryption

Medium-Priority:

- Replay Attacks

- Control flow manipulation attacks

- Fault attacks

Low-Priority:

- Side-channel attacks

- Malicious repairing attacks

- Malicious reprogramming and remote attack vectors

Encryption makes the most sense to implement, as it prevents attacks and vulnerabilities on both

microcontrollers and radio frequency modules and is a minimum level implementation of security

that meets the project environment. A form of encryption covers against a lot of different possible

attack vectors, providing a strong basis that would deter most beginner level attackers. Due to this

project likely being used in a class and project environment, attempting to provide too much

sdmay25-27 - 121

security takes away other features this project aims to implement, especially if the countermeasures

to some of the attack vectors were implemented in hardware with the limited die-space that the

Efabless process provides. Even software implementations would somewhat hinder the user from

using this project to its fullest extent. Since this project likely won’t be sold commercially as well

and serves as a learning platform, noting the security concerns while providing users options in

securing the device itself allows the user to make educated decisions on what level of security best

fits what the user wants to experiment with when using this device.

 PLL CURRENT STARVED VCO CIRCUIT ANALYSIS

Current Starved Oscillator:

Figure 73: Current Starved Oscillator

The oscillator mainly consists of an odd number of inverters in series. The frequency of the

oscillator is equivalent to the inverse of the accumulated delay of the inverters. The delay of each

inverter is equal to:

𝑇 = 𝑡𝑙ℎ + 𝑡ℎ𝑙

For equal rise/fall time, the source and sink currents must match. This will affect the duty cycle of

the oscillator. We believe a 40% - 60% duty cycle across corners is acceptable.

𝐼𝑑 = 𝐼𝑢𝑝 = 𝐼𝑑𝑛

𝑡𝑙ℎ = 𝑡ℎ𝑙 = 𝐶
𝑉𝐷𝐷

2𝐼𝑑

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑁𝑇

sdmay25-27 - 122

𝐹𝑜𝑢𝑡 =
𝐼𝑑

𝑁𝑉𝐷𝐷𝐶

The total capacitance at the output of each inverter stage is proportional to 𝐶𝑜𝑥 and the channel

area of the inverter mosfets. 𝑊𝑝,𝑊𝑛, 𝐿𝑝, 𝐿𝑛 are inversely proportional to the 𝐹𝑜𝑢𝑡 while 𝐼𝑑 is directly

proportional to the frequency.

Figure 74: Unbuffered Voltage Controlled Oscillator Schematic

For the initial design, I used minimum sized inverters and mapped those currents to an NMOS-

input current source with a diode connected PMOS.

𝐼𝑀7 =
1

2
𝜇𝑛𝐶𝑜𝑥

𝑊𝑛

𝐿𝑛

(𝑉𝑐𝑡𝑙 − 𝑉𝑡ℎ𝑛)2

𝐼𝑀8 =
1

2
𝜇𝑝𝐶𝑜𝑥

𝑊𝑝

𝐿𝑝

(𝑉𝐷𝐷 − (𝑉𝑐𝑡𝑙 − 𝑉𝑡ℎ𝑛) − |𝑉𝑡ℎ𝑝|)
2

𝐼𝑚8 = 𝐼𝑚7

𝑉𝐸𝐵𝑁 = 𝑉𝑐𝑡𝑙 − 𝑉𝑡ℎ𝑛

𝑊𝑝

𝐿𝑝

(𝑉𝐷𝐷 − 𝑉𝐸𝐵𝑁 − |𝑉𝑡ℎ𝑝|)
2

=
𝜇𝑛

𝜇𝑝

𝑊𝑛

𝐿𝑛

 (𝑉𝐸𝐵𝑁)2

𝑓𝑜𝑟 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦, 𝐿𝑀𝐼𝑁 = 𝐿𝑝 = 𝐿𝑛

𝑉𝐸𝐵𝑁 =
𝑉𝐷𝐷 − |𝑉𝑡ℎ𝑝|

1 + √
𝜇𝑛

𝜇𝑝

𝑊𝑛

𝑊𝑝

sdmay25-27 - 123

To keep the transistors in saturation,

𝑉𝐸𝐵𝑁 ≤ 𝑉𝑐𝑡𝑙 ≤ (𝑉𝐷𝐷 − |𝑉𝑡ℎ𝑝|)

Buffered VCO:

Figure 75: Buffered Current Starved Voltage Controlled Oscillator Schematic

The VCO output needs to be buffered because any loading on the VCO output node will increase

the delay thus reducing the frequency.

 PLL BUFFER INSERTION THEORY

In digital circuits, driving large loads necessitates buffer insertion to minimize delay and optimize

performance.

The best number of inverter stages to minimize delay is calculated by the following equation.

log(𝐻)

log (3)
≤ 𝑁 ≤

log(𝐻)

log (4)

The minimum theoretical delay is

𝐷𝑀𝐼𝑁 = 𝑁(𝐺𝐵𝐻)
1
𝑁 + 𝑃

The logical effort 𝐺𝑖 of an inverter is 1 and the logical effort H is equal to the ratio of the load

capacitance over the total capacitance at the input node, “vout” for the VCO. This circuit only

contains one branch, therefore 𝐵 = 1. The parasitic delay 𝑃𝑖 of the inverter is 1.

𝐺 = ∏𝐺𝑖

𝐻 =
𝐶𝑡𝑜𝑡𝑎𝑙

𝐶𝑣𝑜𝑢𝑡

sdmay25-27 - 124

𝑃 = ∑𝑃𝑖

Practically The unbuffered VCO output would be driving the first inverter in the output buffer and

the inverter in the feedback configuration which would make 𝐵 > 1 depending on the actual sizing.

However, this ultimately increases the size of the first inverter in the output buffer, which is not

ideal since it increases the loading effect, thus decreasing the operating frequency.

To effectively size the transistor to match the minimum delay, I used these equations,

𝑓 = (𝐺𝐵𝐻)
1
𝑁

At last inverter 𝐼𝑁𝑉𝑁, 𝐶𝑜𝑢𝑡(𝑁) = 𝐶𝑙𝑜𝑎𝑑

𝐶𝑖𝑛(𝑁) =
𝐺𝑁𝐶𝑜𝑢𝑡(𝑁)

𝑓

For equal rise/fall time:

𝑊𝑝

𝑊𝑛

=
𝜇𝑛

𝜇𝑝

Set the desired channel length and use the two equations below to calculate the width of the

mosfets at 𝐼𝑁𝑉𝑁

𝐶𝑖𝑛(𝑁) =
𝜇𝑛

𝜇𝑝

𝑊𝑛

𝐿𝑛

+
𝑊𝑛

𝐿𝑛

𝐶𝑖𝑛(𝑁) =
𝑊𝑛

𝐿𝑛

(
𝜇𝑛

𝜇𝑝

+ 1)

To size 𝐼𝑁𝑉𝑁−1, set 𝐶𝑜𝑢𝑡(𝑁−1) = 𝐶𝑖𝑛(𝑁) and repeat until the first inverter 𝐼𝑁𝑉1

sdmay25-27 - 125

 PLL CHARGE PUMP CIRCUIT ANALYSIS

Figure 76: Conventional Charge Pump Schematic

Analysis at the output stage:

Figure 77: Charge Pump Output Stage

𝑉𝑐𝑡𝑙 ≥ 𝐼𝑅𝐷𝑁 + 𝑉𝐸𝐵𝑁

𝑅𝐼𝐷𝑁 + 𝑉𝐸𝐵𝑁 ≤ 𝑉𝑐𝑡𝑙 ≤ 𝑉𝐷𝐷 − 𝐼𝑅𝑈𝑃 − 𝑉𝐸𝐵𝑃

𝐼𝑀1 =
1

2
𝜇𝑛𝐶𝑜𝑥

𝑊𝑛

𝐿𝑛

(𝑉𝑏𝑛 − 𝐼𝑅𝐷𝑁 − 𝑉𝑡ℎ𝑛)2

𝐼𝑀8 =
1

2
𝜇𝑝𝐶𝑜𝑥

𝑊𝑝

𝐿𝑝

(𝑉𝐷𝐷 − 𝐼𝑅𝑈𝑃 − 𝑉𝑏𝑝 − |𝑉𝑡ℎ𝑝|)
2

sdmay25-27 - 126

𝐼𝑀8 = 𝐼𝑀1

𝜇𝑛

𝑊𝑛

𝐿𝑛

(𝑉𝑏𝑛−𝐼𝑅𝐷𝑁 − 𝑉𝑡ℎ𝑛)2 = 𝜇𝑝

𝑊𝑝

𝐿𝑝

(𝑉𝐷𝐷−𝐼𝑅𝑈𝑃 − 𝑉𝑏𝑃 − |𝑉𝑡ℎ𝑝|)
2

𝜇𝑛

𝜇𝑝

𝑊𝑛

𝐿𝑛

𝐿𝑝

𝑊𝑝

 (𝑉𝑏𝑛−𝐼𝑅𝐷𝑁 − 𝑉𝑡ℎ𝑛)2 = (𝑉𝐷𝐷−𝐼𝑅𝑈𝑃 − 𝑉𝑏𝑃 − |𝑉𝑡ℎ𝑝|)
2

√
𝜇𝑛

𝜇𝑝

𝑊𝑛

𝐿𝑛

𝐿𝑝

𝑊𝑝

 (𝑉𝑏𝑛 − 𝐼𝑅𝐷𝑁 − 𝑉𝑡ℎ𝑛) = (𝑉𝐷𝐷 − 𝐼𝑅𝑈𝑃 − 𝑉𝑏𝑝 − |𝑉𝑡ℎ𝑝|)

𝑉𝑏𝑝 = 𝑉𝐷𝐷 − √
𝜇𝑛

𝜇𝑝

𝑊𝑛

𝐿𝑛

𝐿𝑝

𝑊𝑝

 (𝑉𝑏𝑛 − 𝐼𝑅𝐷𝑁 − 𝑉𝑡ℎ𝑛)) − 𝐼𝑅𝑈𝑃 − |𝑉𝑡ℎ𝑝|

Analysis at the middle stage:

Figure 78: Charge Pump Middle Stage

𝐼𝑀5 =
1

2
𝜇𝑛𝐶𝑜𝑥

𝑊𝑛

𝐿𝑛

(𝑉𝑏𝑛 − 𝐼𝑅𝐷𝑁 − 𝑉𝑡ℎ𝑛)2

𝑉𝑏𝑛 = √
2𝐼

𝜇𝑛𝐶𝑜𝑥
𝑊𝑛
𝐿𝑛

+ 𝐼𝑅𝐷𝑁 + 𝑉𝑡ℎ𝑛

Analysis of the current reference (First Stage)

sdmay25-27 - 127

Figure 79: Charge Pump Current Reference (First Stage)

𝐼 =
𝑉𝐷𝐷 − 𝑉𝑏𝑛

𝑅𝑥 + 150

𝑉𝑏𝑛 = 𝑉𝐷𝐷 − 𝐼(𝑅𝑥 + 150)

𝐼𝑀10 =
1

2
𝜇𝑛𝐶𝑜𝑥

𝑊𝑛

𝐿𝑛

(𝑉𝑏𝑛 − 𝐼𝑅𝐷𝑁 − 𝑉𝑏𝑛)2

𝐼 =
1

2
𝜇𝑛𝐶𝑜𝑥

𝑊𝑛

𝐿𝑛
(𝑉𝐷𝐷 − 𝐼(𝑅𝑥 + 150) − 𝐼𝑅𝐷𝑁 − 𝑉𝑏𝑛)2

𝐼(𝑅𝑥 + 150) = 𝑉𝐷𝐷 − √
2𝐼

𝜇𝑛𝐶𝑜𝑥
𝑊𝑛
𝐿𝑛

− 𝐼𝑅𝐷𝑁 − 𝑉𝑏𝑛

𝑅𝑥 =
1

𝐼

[

𝑉𝐷𝐷 − √
2𝐼

𝜇𝑛𝐶𝑜𝑥
𝑊𝑛
𝐿𝑛

− 𝐼𝑅𝐷𝑁 − 𝑉𝑏𝑛)

]

− 150

Mapping the Resistor values to the maximum/minimum desired currents and the desired signal

swing that is required for the VCO control voltage.

𝑅𝑥(𝑚𝑎𝑥) =
1

𝐼𝑚𝑖𝑛

[

𝑉𝐷𝐷 − √
2𝐼𝑚𝑖𝑛

𝜇𝑛𝐶𝑜𝑥
𝑊𝑛
𝐿𝑛

− 𝐼𝑚𝑖𝑛𝑅𝐷𝑁 − 𝑉𝑏𝑛(𝑚𝑖𝑛))

]

− 150

𝑅𝑥(𝑚𝑖𝑛) =
1

𝐼𝑚𝑎𝑥

[

𝑉𝐷𝐷 − √
2𝐼𝑚𝑎𝑥

𝜇𝑛𝐶𝑜𝑥
𝑊𝑛
𝐿𝑛

− 𝐼𝑚𝑎𝑥𝑅𝐷𝑁 − 𝑉𝑏𝑛(𝑚𝑎𝑥))

]

− 150

sdmay25-27 - 128

 CODE

Here is the link to our Git repository: https://git.ece.iastate.edu/sd/sdmay25-27#

 TEAM ORGANIZATION

Complete each section as completely and concisely as possible. We strongly recommend using

tables or bulleted lists when applicable.

 Team Members

1. Nolan Eastburn

2. Noah Thompson

3. Nathan Stark

4. Ibram Shenouda

5. Ethan Kono

6. Will Custis

 Required Skill Sets for Your Project

- Designing digital components with HDL

o Verilog will be used, but VHDL experience useful as well

- Testing digital components with testbench simulations

- Writing programs using C for embedded systems

o Memory mapping will be used for most peripherals

- Using Git for version control

- Using NGSpice for analog simulation

 Skill Sets covered by the Team

- All team members have experience in some HDL (VHDL or Verilog) and C for embedded

systems from previous ISU coursework

- Nathan and Nolan have experience in unit testing from previous work experience

- All team members have experience in Git from prior courses

- Ibram and Noah have experience in NGSpice

 Project Management Style Adopted by the team

Our team is going with a Waterfall approach for project management. This was chosen because

our project is strongly interconnected and we have a hard, inflexible deadline at the end of the

project. Because of this, Waterfall seemed to be the best choice since it has a strong structure for

design, implementation and testing.

 Initial Project Management Roles
Team Organization - Noah
Project Management – Will
Analog Design Lead - Ibram
Digital Architecture Developer - Nathan
Digital Architecture Developer - Nolan
Security Architecture Developer – Ethan

https://git.ece.iastate.edu/sd/sdmay25-27

sdmay25-27 - 129

 Team Contract

Team Members:

1) _Nolan Eastburn_________________ 2) _Noah Thompson_______________

3) _Nathan Stark __________________ 4) _Ibram Shenouda________________

5) _Ethan Kono____________________ 6) _Will Custis____________________

sdmay25-27 - 130

Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular team meetings:

Weekly Advisor/Client Meeting:
Monday 2:00pm Durham 353

Weekly General Team Meeting:
Saturday 10:00 AM TLA

Preferred method of communication updates, reminders, issues, and scheduling (e.g., e-
mail, phone, app, face-to-face):

Team Discord

Microsoft Teams (Advisor/Client)

2. Decision-making policy (e.g., consensus, majority vote):

Majority rules (4 members needed to approve)

At least 4 team members need to be present to make a decision

3. Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be
shared/archived):

Minutes will be kept in OneDrive folder, which is shared amongst the team

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings:

Members are expected to attend 80% or more of all team meetings.

If unable to attend, notify as far in advance as possible.

2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:

Complete all tasks by deadline.

Each member is responsible for their assignment tasks.

Communicate about roadblocks and give advanced notice if deadline is likely to slip.

3. Expected level of communication with other team members:

Communicate regularly at meetings and on Discord.

sdmay25-27 - 131

Bring up all issues and roadblocks encountered in a timely manner.

If you know the answer to a question that is posted, promptly answer it.

4. Expected level of commitment to team decisions and tasks:

All team members are expected to follow through on obligations, even if they did not vote in

favor of it.

Leadership

1. Leadership roles for each team member (e.g., team organization, client interaction,
individual component design, testing, etc.):

a. Team Organization - Noah
b. Project Management - Will
c. Analog Design Lead - Ibram
d. Digital Peripheral Lead - Nathan
e. CPU/Memory Architecture Lead - Nolan
f. Software Lead – Ethan

2. Strategies for supporting and guiding the work of all team members:

Post solutions to common problems in Discord or OneDrive so everyone can see it.

Time at meetings will be devoted to discussing issues.

3. Strategies for recognizing the contributions of all team members:
a. Discussions of what was done the week prior
b. Presentations to our faculty advisor

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings to the
team.

a. Noah:
a. Embedded C code
b. VHDL and Verilog
c. Micro Processor integration

b. Nolan:
a. Knowledge of C programming for MCUs
b. Decent experience in VHDL, basic experience in Verilog
c. Intermediate Git knowledge
d. Have experience with system and unit testing
e. Can adapt to many different codebases quickly

c. Nathan:
a. HDL experience in VHDL
b. Some verification experience for VHDL
c. C/C++ programming for MCUs

sdmay25-27 - 132

d. Ibram:
a. Analog Design
b. PCB design and testing
c. Embedded C

e. Ethan:
a. Security compliance and national standards (NIST)
b. Networking & Protocol Security
c. Wireless Security

f. Will:
a. Experience Programming in C
b. Some experience with encryption methods
c. Network and Wireless Security

2. Strategies for encouraging and supporting contributions and ideas from all team members:
- Everyone is encouraged to contribute any ideas and will always be heard by the rest of

the team.
- Ideas will be taken into consideration by the team and will be discussed thoroughly to

promote the inclusion of new concepts.

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a
team member inform the team that the team environment is obstructing their opportunity
or ability to contribute?)
- Individuals who feel that there are inclusion issues should bring up any problems with

the team first.
- When a problem is brought to the team, everyone is required to review any concerns

together as a group.
- If the problem consists of the individual should go directly to the faculty advisor for

advice or potential guidance for themselves and the team as a whole.

Goal-Setting, Planning, and Execution

1. Team goals for this semester:
a. Finish the documentation report
b. Design the high-level hierarchy of the project
c. Implement some of the components that will go into the project
d. Show proof-of-concept of the project as a whole
e. If all goes well, develop a basic prototype of the project (this may be unrealistic

depending on the complexity)
2. Strategies for planning and assigning individual and team work:

a. Task breakdown
b. Assign tasks with members with the most applicable skillsets
c. Flexible to reevaluate and reassign tasks based on needs.

3. Strategies for keeping on task:
a. Consistent weekly meetings with the team and professor
b. Acknowledging individual contributions

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?

sdmay25-27 - 133

Issues will first be discussed during the team meetings or via Discord. All team members

 are expected to discuss issues in good faith.

2. What will your team do if the infractions continue?

If the issue cannot be resolved amongst the team, an instructor or faculty advisor will be

 informed to try and mediate the dispute.

a) I participated in formulating the standards, roles, and procedures as stated in this

contract.

b) I understand that I am obligated to abide by these terms and conditions.

c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) _Nolan Eastburn___________________________________ DATE: __9/19/2024__________

2) _Noah Thompson__________________________________ DATE: __9/19/2024__________

3) _Nathan Stark______________________________________DATE: __9/19/2024_________

4) _Ibram Shenouda___________________________________DATE: __9/19/2024_________

5) _Ethan Kono_______________________________________DATE: __9/19/2024_________

6) _Will Custis__DATE: __9/19/2024_________

