Project Planning Lightning Talk

sdmay25-27

Nathan Stark, Nolan Eastburn, Noah Thompson, Will Custis, Ethan Kono, Ibram Shenouda

Client/Advisor: Dr. Duwe

Project Overview

- Design a microcontroller with radio communication capabilities
- Open-source
- Can be fabricated
- Will be used by ISU ChipForge group, possibly faculty and hobbyists
- Designed using the Caravel platform from Efabless
- Inspired by the TI CC1352P (block diagram shown to the right)

Figure 4-1. CC1352P Block Diagram

Project Management Style

- Using a Waterfall approach
- Useful since project has a small set of large deliverables
- Challenging to do incremental development using Agile with so many interconnected components

Task Decomposition

- Four primary categories
 - Documents
 - Design document
 - Test plan document
 - Hardware Implementation
 - Digital components
 - Analog components
 - Software Implementation
 - Zigbee protocol
 - Flash application
 - Firmware
 - Testing
 - Digital simulation
 - Test programs
 - Analog simulation

1 of 3 of our task decomposition graphics

Key Milestones and Metrics

- Design document finished
- Hardware components created
 - All baseline implementations created and building
- Initial testing complete
 - Hardware components tested as a system in simulation/on FPGA
- Test plan created
 - Test cases for after fabrication to evaluate electrical characteristics and behavior of the device
 - Test cases should cover all peripherals and electrical characteristics

Gantt chart for fall period on the next slide

	Fall																
Weeks/Task		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Project Scope																	
Research available tools	OpenRAM																
	RISC-V Core Generation																
Wishbone Crossbar Creation																	
RISC-V Core Creation																	
SRAM Generation																	
DMA Controller																	
Security Component	AES 128-bit Encryption																
External Peripherals																	
Fabrication																	
Radio Frequency Components	Bluetooth																
	ZigBee																
Phase Locked Loop (PLL)	Research																
	Phase Frequency Detector																
	Charge Pump																
	low Pass Filter																
	Voltage Controlled Oscilator																
	Divider																
	Testing																
Create Design Documents																	
Create Testing Documents																	
Testbench Creation	Peripherals																
	RISC-V Core																

Key Risks

- Unknown design tools
 - Design tools are different from those used in ISU courses
 - Some tools have known issues that may cause delays
- Limited die space (2.92 mm x 3.52 mm)
 - May not be possible to fit everything we want
 - Difficult to evaluate prior to initial implementation

Risk Mitigation

- Unknown design tools
 - Currently working to get acquainted with tools
 - Dr. Duwe has pointed us towards some people who have more experience with tools
- Limited die space
 - Have created list of components in minimum viable product
 - If die space becomes issue, can strip out components incrementally

Conclusion

- There are four primary tasks to complete for the project
- Tasks are somewhat dependent on each other
 - Will require good coordination to stay on schedule
- Risks associated with unfamiliar tools and process limitations
 - Doing more research to understand, have options to reduce impact